Профессиональное образование

B．Г．ЗоЛИН

TEXHOЛOГクHECKOE 050РУДОВАНИЕ ПРЕПЛРИЯォИй 05以ЕСTBEMHO「O
 ГИНАНИН

Учебник

В.П.ЗОЛИН

ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ПРЕДПРИЯТИЙ ОБЩЕСТВЕННОГО จПИТАНИЯ
 ПУЧЕБНИК
 O) екомендовано
 Федеральным государственным учреждением
 "Федеральный институт развития образования"
 в качестве учебника для использования
 в учебном процессе образовательных учреждений, реализующих программы начального
 профессионального образования
 Регистрационный номер рецензии 122
 от 28 апреля 2009 г. ФГУ «ФИРО»

12-е издание, стереотипное

ACADIMA
Mocinab

2014

> Рецензенты:

технолог-проектировщик ООО "БРК инжиниринг» А. Н. Колчин; преподаватель профессионального Торгово-кулинарного училища № 32
г. Таганрога E. B. Maзепа

Золин В. П.

98394

3-793 Технологическое оборудование предприятий общественного питания : учебник для студ. учреждений сред. проф. образования / В.П.Золин. - 12 -е изд., стер. - М. : Издательский центр «Академия», 2014. - 320 с.

ISBN 978-5-4468-1100-7
Рассмотрено механическое и тепловое оборудование предприятий общественного питания, в том числе машины для обряботки овощей, мяса, рыбы, подготовки кондитерского сырья, приготовления и обработки теста и полуфабрикатов из него, нарезания хлеба и гастрономических продуктов, пицеварочные котлы и автоклавы, пароварочнье лшнарыты, апнараты Аля жаренья и выпечки, варочно-жарочное и водогройное оборудование, оборудование для раздачи пищи, холодильное оборулонание. Особое внимание уделено освещению правил эксплуатации оюорудонания, соблюдению требований техники безопасности, законолательных актов об охране труда. Приведена типовая инструкция по охране труда мя новара.

Учебник может быть использован при изучении обицирофюсссиональной лисциплины ОП «Техническое оснащение и организация рабочето места» в соответствии с ФГОС СПО для профессии "Повар. кондитр".

Аля студентов учреждений среднего профессиинальною образования. Может быть полезен для специалистов предприятий общестиенното пита-

УДК 64.024(075.32)
ББК 36.99-5я722

Оригинал-макет gанного издания янляется собстненностиния Изgательского центра "Академия», ц его воспроизведение любым способом без согласия пранообладателя запрещается

Vıажаемый читатель！

Диниый учебник является частью учебно－методического комп－ л＂кти ו๘о профессии «Повар，кондитер＂．

Уџббик предназначен для изучения междисциплинарных кур－ 1 ＂．，ихолящих во все профессиональные модули．

Упппно－методические комплекты нового поколения включают ＂＂．бя＇традиционные и инновационные учебные материалы，по－ ниляющие обеспечить изучение общеобразовательных и обще－川ифмссиональных дисциплин и профессиональных модулей． Кぃжлый комплект содержит учебники и учебные пособия，сред－ －＇ти юбучения и контроля，необходимые для освоения общих и川юкфессиональных компетенций，в том числе и с учетом требова－ ॥ий рлботодателя．

Учюбные издания дополняются электронными образовательны－ ми ןюсурсами．Электронные ресурсы содержат теоретические и ＂๗кэические модули с интерактивными упражнениями и трена－ жюр»ми，мультимедийные объекты，ссылки на дополнительные мит•ридлы и ресурсы в Интернете．В них включен терминологи－ ＇юский словарь и электронный журнал，в котором фиксируются мшшнны параметры учебного процесса：время работы，результат ＂1．．＂олнения контрольных и практических заданий．Электронные ри＂урсы легко встраиваются в учебный процесс и могут быть плиитированы к различным учебным программам．

Предисловие

По прогнозам специалистов, в XXI в. общественное питание будет занимать преобладающее место по сравнению с питанием в домашних условиях. В связи с этим возникает необходимость дальнейшей механизации и автоматизации производственных процессов как основного фактора роста производительности труда.

В настоящее время одной из важнейших задач в стране является радикальная реформа по ускорению научно-технического прогресса в народном хозяйстве.

В общественном питании она стоит особенно остро, так как на предприятиях до сих пор преобладающее большинство производственных процессов выполняется вручную. Существует много видов работы, в которых занято большое количество работников низкоквалифицированного труда. Поэтому коренная перестройка в этой сфере производсгва вызывает необходимость широкой индустриализации производственных процессов, массового внедрения промышленных методов приготовления и поставки продукции нотребителям.

Подобная организация производства в общественном питании позволит не только применять новое высокопроизводительное отечественное и импортное оборудование, но и более эффективно его использовать. В выигрыше будут и потребители (сократятся затраты времени, повысится культура обслуживания), и работники общественного питания (за счет механизации и автоматизации производства резко снизятся затраты ручного труда, увеличится производительность производства продукции и улучшатся санитарно-технические условия).

Внедрение новой техники и прогрессивной организации производства даст возможность существенно поднять экономическуюо эффективность работы предприятий общественного питания за счет повышения производительности труда, сокращения расходов сырья и энергии.

Научно-технический прогресс в общественном питании не только заключается в развитии и совершенствовании используе-

мых орудий труда, в создании новых более эффективных техни!еских средств, но и немыслим без соответствующего совершен-〔"ъования технологии и организации производства, внедрения повых методов труда и управления.

Аля ускорения темпов научно-технического прогресса в обцею'венном питании большое значение имеет совершенствование эпловых аппаратов, позволяюцих интенсифицировать процессы тешловой обработки сырья за счет применения новых способов нагрева, автоматического поддержания заданных режимов, программирования теплового процесса.

В производстве теплового оборудования за прошедшее столе'лие произошли коренные изменения, которые можно назвать технологической перестройкой. Эти изменения заключались в производстве и внедрении оборудования, испольэующего новые методы тепловой обработки продуктов сухим паром или методом конвективного обогрева.

Аля развития теплового оборудования наиболее перспективным направлением явллется создание аппаратов, имеющих:

- новые способы тепловой обработки продуктов (комбинированный шагрев, обработка продуктов сухим паром и конвективным обогревом);
- автоматическое регулирование и программирование теплового процесса;
- непрерывное действие варки и жаренья продуктов (трансфер-автоматы);
- устройства и приспособ́ления, механизирующие процессы переворачивания и перемешивания продуктов (пищеварочные котлы с механической мешалкой).

Упификация и стандартизация технологического оборудования нозволяют значительно сократить его номенклатуру и снизить материалоемкость, а также создают реальные предпосылки длs уменьшения трудоемкости выпускаемой продукции.

Для повышения технического уровня предприятий общественного питания, росга производительности труда и улучшения организации обслуживания населения важное значение имеет совершенствование раздаточного оборудования, внедрение высокопроизводительных конвейерных линий для комплектования и реализации комплексных обедов. Новым направлением улучшения раздаточного оборудования является создание линий самообслуживания, включающих в себя передвижные мармиты, прилавки,

шкафы и другие виды раздаточного оборудования, отвечающего санитарно-техническим и экологическим нормативам.

Важным средством ускорения научно-технического прогресса в общественном питании является своевременная модернизация оборудования, замена морально устаревшей техники современной, не уступающей по качеству, надежности, метамоемкости и энергоемкости.

Изменилась кулвтура потребления продуктов питания, при этом в зависимости от направленности и объема производства требуется самое разнообразное оборудование для возможности реализовать новые технологические приемы в приготовлении пищи.

для предприятий, осуществляющих свою деятельность в условиях рыночных отношений, огромное значение имеет возможность при необходимости быстро переоснащать оборудование и перенаправлять свою деятельность для достижения необходимого экономического эффекта и наиболее полного удовлетворения потребительского спроса.

Таким образом, перед разработчиком новой техники ставятся задачи значительно улучшить все важнейшие технико-экономические параметры машин, оборудования и различных механизмов в общественном питании. В эти задачи входит:

- создание машин и аппаратов, работающих на основе электрофизических методов тепловой обработки пищевых продуктов (инфракрасные лучи и сверхвысокочастотный нагрев и их использование с традиционными методами);
- разработка средств комплексной механизации и автоматизации производственных процессов для специализированных и узкоспециализированных предприятий общественного питания (блинных, пельменных, пирожковых и др.);
- повышение качества выпускаемого оборудования надежности, долговечности и ремонтопригодности, имеющего стандартные унифицированные узлы и детали;
- создание высокопроизводительных универсальных машин и механизмов, Удобных для использования как в индивидуальном виде, так и в составе механизированных или автоматизированных поточных линий.

Решение этих задач позволит интенсифицировать производственные процессы на предприятиях общественного питания,

значительно улучшить качество выпускаемой продукции и снизить ее себестоимость.

Дальнейшее расширение сети предприятий общественного иитания и увеличение их технической оснащенности требует от обслуживающего персонала повышения технической грамотности, специальных знаний и повышения квалификации.

В данном учебнике рассматривается отечественное механическое, тепловое, холодильное оборудование, прошедшее многолетнюю эксплуатацию на предприятиях общественного питания и используемое в настоящее время благодаря своей надежности и простоте в эксплуатации. В связи с поступлением и использованием на предприятиях общественного питания импортного оборудования приведены основные его модели с изложением устройства, правил эксплуатации и технических характеристик. Приводятся необходимые сведения по охране труда, технике безопасности и пожарной безопасности при эксплуатации оборудования.

Глава 1

ОБЩИЕ СВЕДЕНИЯ ОБ ОБОРУДОВАНИИ

1.1. КЛАССИФИКАЦИЯ ОБОРУДОВАНИЯ, ИСПОЛЬЗУЕМОГО НА ПРЕДПРИЯТИЯХ ОБЩЕСТВЕННОГО ПИТАНИЯ

Машина - это совокупность механизмов, выполняющих опреАеленную работу или преобразующих один вид энергии в другой. В зависимости от назначения различают электрические машины (двигатели) и рабочие машины.

Рабочие машины могут выполнять опредсленную работу по изменению формы, размеров, свойств и состояния объсктов труда. Объектами труда на предприятиях общественного питания служат пищевые продукты, подвергаюциеся различной технологической обработке - очистке, измельчению, взбиванию, перемешиванию, формованию и др.

По степени автоматизации и механизации выполняемых технологических процессов различают машины неавтоматические, полуавтоматические и автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются поваром, за которым закреплена данная машина. В машинах полуавтоматического действия основные технологические операции выполняются машиной; ручными остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия все технологические и вспомогательные процессы, как правило, выполняются машиной. Они используются в составе поточных и поточно-механизированных линий и полностью заменяют труд человека.

В зависимости от назначения и вида обрабатываемых продуктов машины, используемые на предприятиях общественного питания, можно подразделить на несколько групп:

машины для обработки овощей и картофеля - сортировочные, моечные, очистительные, резательные, протирочные и др.;

машины яля обработки мяса и рыбы - мясорубки, фаршемещалки, рыхлители мяса, котлетоформовочные и др.;

машины gля обработки муки и теста - просеиватели, тесточесительные, взбивателыные и др.;

машшны gля нарезания хлеба и гастрономических продуктов хлеборезки, колбасорезки, маслоделители и др.:

универсальные приводы с комплектом сменных исполнительных машин;

машины уля мытья столовой посуды и приборов;
подъемно-транспортные машины.

1.2. ТРЕБОВАНИЯ К МАТЕРИАЛАМ, ИСПОЛЬЗУЕМЫМ ДЛЯ ИЗГОТОВЛЕНИЯ МАШИН

Машины изготовляются из металических и неметамических материалов. Выбор материала зависит от назначения машин и способа их изготовления. При выборе материала учитываются требования прочности и жесткости деталей, а также технологичность их изготовления.

Деталь, изготовление которой возможно наименее трудоемкими производительными процессами (ковкой, отливкой), считается технологичной.

Прочность - это свойство детали под действием внешних приложенных сил не допускать поломки и остаточных деформаций.

Жесткость - это свойство детали под действием внешних приложенных сил допускать упругие деформации только в установленных пределах.

Материалы, используемые для изготовления рабочих камер машин общественного питания, не должны вступать в реакцию с продуктами и моюгцими средствами, подвергаться коррозии, оказывать вредное действие на продукты и должны хорошо очищаться от них.

Основным материалом для изготовления машин являются сталь и чугун, механические свойства которых зависят от содержания в них углерода, а также от примесей и добавок к ним (легирование).

Из цветных металов применяются алюминий, медь, хром, никель, ңинк и сплавы на их основе, которые имеют хорошую прочность, малый удельный вес и хорошо обрабатываются. Все

материалы, контактирующие с пищевыми продуктами, должны быть антикоррозийными, легко поддаваться чистке, мытью, обеззараживанию и просушиванию.

В последние годы большое распространение получили неметалические материалы: стекло, кожа, резина, поролон и различные пластмассы. В отличие от металлов они имеют преимущество: антикоррозийны и бесшумны в работе, хотя их применение снижает жесткость и прочность деталей.

Необходимо, чтобы материалы, используемые для изготовления машин, отвечали требованиям стандартов и санитарным нормам.

1.3. ОСНОВНЫЕ ЧАСТИ И ДЕТАЛИ МАШИН

Современные машины состоят из большого числа деталей разного назначения. Соединенные между собой детали образуют узлы. Основными узлами любой машины, используемой на предприятиях общественного питания, являются станина, корпус, рабочая камера, рабочие органы, передаточный механизм и двигатель.

Переgаточный механизм передает движение от вала двигателя к рабочему органу машины, одновременно обеспечивая требуемые скорость и направление движения. Как правило, в качестве g вигателя машины используется электродвигатель, который преобразует электрическую энергию во вращательное движение вала.

Станина служит для установки и монтажа всех узлов машины. Изготовляется она обычно литой или сварной и имеет отверстия для закрепления машины на рабочем месте.

Корпус машины предназначен для размещения внутренних частей машины - рабочей камеры, передаточного механизма и др. Иногда станина и корпус изготовляются как одно целое.

Рабочая камера - место в машине, где продукты обрабатываются рабочими органами.

Рабочие органы - это узлы и детали машины, непосредственно воздействующие на продукты питания в процессе их обработки.

1.4. ПОНЯТИЕ О ПЕРЕДАЧАХ

Передачей называется механизм, передающий вращательное движение от вала электродвигателя к валу рабочих органов. Передачи позволяют одновременно изменять частоту вращения

шぃлл，награвление движения и преобразовывать один вид движе－ ІІия＂лрусой．

13 механических передачах вал с закрепленными на нем дета－ лмми，передающими вращение，называется ведущим，а вал с дета－ лими вращения－ведомым．

Все механические передачи можно подразделить на зубчатые， р＇мснные，червячные，цепные и фрикционные．

Зубчатая переgача（рис．1．1）－это механизм，состоящий из Anyх зубчатых колес，сцепленных между собой，либо из зубчатого колеса и рейки，червяка и червячного колеса．Такая передача по－ лучила широкое применение в передаточных механизмах машин．

В зависимости от конструкции и расположения зубчатых колес ъубчатые передачи подразделяются на цилиндрические，кониче－ ＇кие и планетарные．По способу зацепления зубьев зубчатые пе－ р’дачи подразделяются на переддчи с внешним и внутренним за－ щюллением．

Рис．1．1．Зубчатые передачи：
＂－－прямозубая；б－косозубая；в－шевронная；г－коническая；g－с круго－ ぃぃми зубьями：е－с внутренним зацеплением

В зависимости от расположения зубьев колеса подразделяются на прямозубые, косозубые и шевронные. Аля передачи сложного вращательного движения используется планегарный зубчатый механизм (рис. 1.2, a), в котором одно зубчатое колесо неподвижно, другое совершает двойное вращение: вокруг своей оси и вокруг оси неподвижного колеса. Этот вид передачи используется, например, во взбивальных машинах.

Червячная переgача (рис. 1.2, б) - механизм, состоящий из винта со специальной резьбой (червяк) и зубчатого колеса с зубьями соответствующей формы. Эта передача компактна, бесшумна и значительно снижает скорость вращения вала. Применяется для передачи движения между валами с пересекающимися осями.

Рис. 1.2. Передаточные механизмы:
а - планетарная передача; 6 - червячняя передача; в - цепная передача; г ременная передача; g - фрикционная передача; 1, 9 - ведущие колеса; 2 ведомое колесо; 3 - водило; 4 - вал с червяком; 5 - червячное колесо; 6, 8- звездочки; 7 - цепь; 10 - ремень: 11 - шкив; 12 и 13 - гладкие ролики

12

Преимуществом данного типа передачи является большое передаточное число, что позволяет выиграть в силе. К недостаткам червячной передачи относятся сложность в изготовлении и необходимость в периодической смазке.

Цепная переgача (рис. 1.2, в) состоит из двух закрепленных на валах зубчатых колес - звездочек и шарнирной гибкой цепи, которая надевается на звездочки и служит для передачи вращения. Эта передача применяется в механизмах и машинах, имеющих большое расстояние между валами и параллельное расположение их осей. Цепные передачи обеспечивают постоянное передаточное отнопнение и по сравнению с ременной передачей позволяют передавать большие мощности, кроме того, одной цепью можно приводить в движение несколько валов. К недостаткам цепной персдачи можно отнести высокую стоимость обслуживания, сложность изготовления и шум в процессс работы. Цепные передачи используют на поточных линиях.

Ременная передача (рис. 1.2, г) осуществляется с ломощью двух шкивов (колес), закрепленных на ведущем и ведомом валах и надетого на эти шкивы ремня, Вращение от одного вала к другому передается посредством силы трения, возникающей между шкивом и ремнем.

Ремень в поперечном сечении может иметь форму прямоугольника (плоскоременная передача), трашеции (клиноременная передача, круга (круглоременная передача). Ремни выполняются из кожи или хлопчатобумажной и прорезиненной ткани. Нормальная работа ременной передачи зависит от иравильного натяжения ремня. Ременная передача бесшумна в работе, проста по конструкции и предохраняет машину от поломки в случае заклинивания, так как ремень будет пробуксовывать. На предприятиях общественного питания широкое применение получила клиноременная передача, используемая в картофелечистках, мясорубках и в некотором другом оборудовании.

Фрикционная переgача (рис. 1.2, g) состоит из двух роликов (катков), насаженных на валы и прижатых один к другому, Врацение от ведущего цилиндра передается ведомому за счет силы трения.

При передаче вращения между параллельными валами применяются цилиндрические передачи, между пересекаюпимися валами - конические.

Фрикционные передачи просты по конструкции, бесшумны в работе и самопредохраняются от перегрузок, КПД - $80 \ldots 90 \%$. одиако имеют некоторые недостатки: непостоянное передаточное

число и повышенный износ цилиндров. Этот вид передачи применяют во взбивальных машинах.

Кривошипно-шаппунный механизм состоит из коленчатого вала, шатуна и поршня. При вращении коленчатого вала шатун заставляет поршень перемещаться возвратно-поступательно. Предназначен для преобразования вращательного движения в возвратно-поступательное движение рабочего инструмента. Этот механизм применяется в компрессорах холодильного оборудования.

1.5. ПОНЯТИЕ ОБ Э.ПЕКТРОПРИВОДАХ

Электроприводом (электрическим приводом) называется электромеханическое устройство, используемое для приведения в движение механизмов или машин, в котором источником механической энергии служит электрический двигатель. Электропривод состоит из электрического двигателя, передаточного механизма и пульта управления. На предприятиях общественного питания наибольшее распространение имеют электродвигатели, рассчитанные на напряжение 380 или 220 В. Это значит, что один и тот же двигатель может работать от сети переменного тока частотой 50 Гц и напряжением 380 или 220 B .

Широкое применение получили универсальные электроприводы, которые могут приводить в движение различные устанавливаемые на них сменные рабочие механизмы - фаршемешалку, мясорубку, взбивалку и др. Использование универсальных приводов на предприятиях общественного питания очень выгодно. Объясняется это тем, что сменные рабочие машины применяются не более 1 ч и поэтому имеют очень малый коэффициенг использования. В таких случаях устанавливать электропривод к каждой машине нецелесообразно из-за увеличения ее стоимости и занимаемой площади. В настоящее время промышленность выпускает универсальные приводы двух видов: общего назначения, которые используются в нескольких цехах, и специального назначения, которые используются только в одном цехе, например мясном. К универсальным приводам общего назначения относятся универсальные малогабаритные приводы УММ-ПР с электродвигателем переменного тока, УММ-ПС с электродвигателем постоянного тока, которые используют на транспорте (в камбузах судов и вагонах-ресторанах).

14

Все универсальные приводы имеют буквенные обозначения. Первая буква П обозначает привод, вторая - название цеха: М - мясной, X - холодный, Г - горячий, У - универсальный, например, для холодного цеха - ПХ-0,6, для горячего - ПГ-0,6 и для мясного цеха - ПТМ-1,1 (0,6 и 1,1 означают мощность электродвигателя, кВт). На приводы общего назначения ПУ-0,6 и П-11 устанавливаются сменные механизмы, которые имеют буквенные обозначения: первая буква М - механизм сменный; вторая М мясорубка, В - механиэм взбивательный. О - механизм овощерезательный. Устройство и принцип работы универсальных приводов и сменных механизмов подробно освещены в гл. 2.

1.6. АППАРАТЫ ВКЛЮЧЕНИЯ

Аля нормальной эксплуатации электрооборудования необходимо иметь специальные аппараты и устройства, с помощью которых производится коммутация электрических цепей. Управление электрооборудованием может быть трех видов: ручным - пуск и останов с помощью рубильников, выключателей; полуавтоматическим - с помощью пусковой кнопки; автоматическим - с помощью автоматического аппарата без участия человека.

К аппаратам включения (рис. 1.3) относятся микропереключатели и кулачковые переключатели, пакетные выключатели, pyбильники и кнопочные пускатели, штепсельные разъемы, магнитные пускатели.

Микропереключатели предназначены для включения и отключения электродвигателя под воздействием усилия этой машины или ее деталей. Они имеют небольшие размеры, просты и надежны в эксплуатации и поэтому широко применяются в различных машинах.

Кулачковые переключатели состоят из корпуса, шпинделя и рукоятки. Внутри переключателя расположены подвижные и неподвижные контакты. С правой и левой сторон корпуса находятся клеммы, к которым подсоединяют провода электросети и машины. При повороте рукоятки на 90° подвижные контакты соединяются с неподвижными, образуя различные варианты замыкания контактов.

Пакетные выключатели значительно компактнее рубильников и монтируются с выводом на панель только рукоятки, что обеспечивает безопасность работы обслуживающего персонала.

Пакетные выключатели в основном применяются для включения и выключения электродвигателей и выпускаются на токи 10 и

Рис. 1.З. Аппараты включения:
a - трехфазные розетка и вилка с заземляющим контактом; б - кнопочный пускатель; в - однофазные розетка и випка; r - схема микропереключатепя; g - схема вкпючения трехфазного двигателя пускателем типа ПНВ; e-схема өключения однофазного двигателя пускагелем типа ПНВС (ПО - пусковая обмотка, РО - разгрузочная обмотка); 1 и 11 - розетки; 2, 4 и 9 - клеммы гнезд розеток; 3, 10 и 12 - выступы; 5, 6 и 14 - контакты вилки; 8 - впадины

25 А при напряжении 220 В в одно-, двух- и трехполюсном исполнениях. Пакетные выключатели могут использоваться и при напряжении 380 В, но допустимая величина тока для них снижается соответственно до 6 и 15 A . При номинальных величинах тока и напряжения и коэффициенте мощности, равном 0,8 , пакетные выключатели выдерживают 20 тыс. переключений. Частота переключений не должна превышать 300 раз в течение 1 ч. Коэффициент мощности пакетного выключателя рассчитывается по формуле

$$
\cos \varphi=P / S=P / \sqrt{Q^{2}+P^{2}}
$$

где P, S и Q - мощности электродвигателя соответственно активная, полная и реактивная.

Поворачивая рукоятку пакетного выключателя на 90°, можно включать и отключать оборудование. Из четырех положений рукоятки пакетного выключателя два соответствуют включенному и два - выключенному состоянию машин.

Кроме пакетных выключателей широко щрименяются и пакетные переключатели. В пакетном переключателе только одно положение соответствует отключенному состоянию оборудования, а три остальных - включенному различными способами. K ним относится тепловой пакетный кулачковый переключатель (ТПКП).

Рубильники применяются в качестве разъединителей для размыкания и замыкания электрической цепи с помощью ручного привода и лишь изредка - для включения и отключения различного технологического оборудования. Они устанавливаются на распределительных электрических щитах и, как исключенис, рядом с оборудованием на стене с обязательным защитным кожухом. Применяются рубильники с боковым и центральным приводами на токи $60,100,200$ А и более и напряжениях 220 и 380 В.

Кнопочные пускатели представляют собой трехполюсный выключатель, замыкание контактов которого производится нажатием на кнопку «Пуск», размыкание - на кнопку «Стоп». Они выпускаются в защищенном исполнснии и рассчитаны на ток до 12,5 А и потребляемую мощность не более 2,5 кВт.

Шmenceльные разъемы применяются для подключения к сети тереносных и передвижных электрических машин и электротепловых аппаратов. Штепсельные разъемы изготовляются различного типа, вида и размера.

Выбор размеров контактных штырей зависит от мощности и напряжения тока, на котором они будут работать. Штепсельные разъемы, состоящие из розетки и вилки, применяются в цепях однофа.зного тока. Трехконтактнне разъемы используются для однофазного тока, но при этом один контакт связан с заземляющим приводом.

Токонесущие контакты в штеисельном разъеме находятся внутри пластмассового корпуса, что предохраняет обслуживающий персонал от поражения электрическим током.

Магнитные пускатели, управляемые кнопочным пультом.

1.7. АППАРАТЫ ЗАЩИТЫ

Токи перегрузки и короткого замыкания в основном возника-
 минального. Приийдмй этого могут быть повреждение электро-

изоляции, перегрузка двигателя и др. Под действием больших токов за короткое время может выделиться такое количество теплоты, которое перегреет провода и электрооборудование выше критической для изоляции температуры. Если не обеспечить своевременное отключение электрической цепи, то произойдет воспламенение изоляции проводов и электрооборудования.

Аля защиты электрооборудования от перегрузок применяются автоматические выключатели, плавкие предохранители, тепловые реле защиты.

Автоматический выключатель (рис. 1.4) служит для защиты электроцепи от токов короткого замыкания и токов перегрузки.

Автоматический выключатель представляет собой пластмассовый корпус, внутри которого установлены подвижные и неподвижные контакты, а также три электромагнитных и три тепловых расцепителя.

На крышке корпуса имеется две кнопки: одна черная «Пуск», другая красная - "Стоп». При коротком замыкании в цепи срабатывают электромагнитные расцепители.

Рис. 1.4. Автоматический выключатель:
а - общий вид; 6 - со снятой крышкой: 1 - кнопка "Стоп»; 2 - кнопка «Пуск»; 3 - электромагнитный расцепитель; 4 - подвижные контакты; 5 неподвижные контакты; 6 - дугогасительные камеры

18

Рис. 1.5. Плавкий предохранитель:
а-резьбовой; 5 - трубчатый; 1, 5- корпус предохранителя; 2, 7 - боковые контакты; З - нижний контакт; 4, 6 - ппавкая вставка; 8 - коробка; 9 - контактные ножки; 10, 13 - обойма; 11 - изоляционная труба; 12 - плавкая вставка

При длительных перегрузках в цепи срабатывают тепловье расцепители.

Плавкие преgохранители (рис. 1.5) являются устройствами быстродействующей защиты и по своей конструкции подразделяются на резьбовые и трубчатые.

Главной частью плавких предохранителей является плавкая вставка - металическая проволока или пластина меньшего сечения, чем сечение проводов.

Если ток короткого замыкания в 5 раз и более превышает номинальный ток в цепи, плавкая вставка мгновенно расплавляется. При этом электрическая џепь разрывается, и прохождение тока к электропотребителям прекращается.

Тепловое реле защиты служит для автоматического отключения оборудования. Принцип действия тепловых реле защиты тот же, что и у автоматических выключателей с тепловыми расцепителями.

1.8. АППАРАТЫ КОНТРОЛЯ И УПРАВЛЕНИЯ

K аппаратам контроля и управления относятся программные устройства, манометры, терморегуляторы, реле времени. Эти аппараты устанавливаются в электроплитах, электрожарочных шкафах, электропищеварочных котлах, печах СВЧ и других видах оборудования. Основными частями ашпаратон контроля являются чувствительные элементы - датчики, воспринимающие изменение режима работы аппарата. Рабочий элемент воспринимает импульс чувствительного элемента и соответственно включает или отключает пусковое устройство данного оборудования.

Электроконтактный манометр (рис. 1.6) служит для контроля и автоматического поддержания давления в пароводяной рубанке пищеварочных котлов.

Он состоит из корпуса, трех стрелок с электроконтактами и шкалы опредсления давления в рубашке котла.

При включении котла в работу в его пароводяной рубашке возрастает давление и манометрическая стрелка 2 перемещается по шкале, отражая давление в пароводяной рубашке котла. Но как только манометрическая стрелка совместится со стрелкой 3 , заранее установленной на отметке, соответствующей предельно заданному давлению, произойдет автоматическое отключение трубчатьх электронагревателей (ТЭНов) котла.

При остывании котла давление в пароводяной рубашке уменьшается и манометрическая стрелка перемещается в обратном на-

Рис. 1.6. Электроконтактный манометр:
1 - контактная стрелка нижнего предела давления: 2 - манометрическая стрелка; 3-контактная стрелка верхнего предепа давления; 4 - шкала определения давления; 5 - соединитепьный штуцер; 6 гнездо для переводного ключа

правлении. При совмещении ее со стрелкой 1, установленной на отметке минимального давления, ТЭНы автоматически включаются в работу.

Станция управления примепяется мл контроля, включения и регулирования температурного режима электрических тепловых аппаратов (котлов, водонагревателей, кипятильников и др.).

Станция управления обеспечивает автоматическое регулирование работы котла, поддерживая заданный режим. Она укрепляется на стене рядом с тепловым оборудованием.

Станция управления для пищеварочных электрических котлов имеет:

- магнитный пускатель, которым с помощью кнопок «Пуск» и «Стоп» включают и отключают пять ТЭНов котла;
- плавкие предохранители пробочного типа, устанавливаемые для защиты цепи управления от токов короткого замыкания;
- конденсатор, служащий для защиты котла от "сухого хода»;
- сигнальные контрольные лампочки (две красные и одна зеленая), которые контролируют режим работы котла и напряжение станции управления:
- магнитный пускатель, служащий для включения и выключения одного ТЭНа котла.

Например, для включения котла КПЭ-100 необходимо на общем электрощите включить электропитание котла, при этом загорается зеленая ламшочка. При нажатии на кнопку «Пуск» включаются два магнитных пускателя и ток через них поступает к шести ТЭНам котла; загораются две красные лампочки, а зеленая гаснет.

После достижения необходимой темпсратуры в котле магнитный пускатель разомкнет контакты цепи питания пяти ТЭНов и при этом погаснет одна красная лампочка. В нароводяной рубашке котла происходит понижение давления ло заданного уровня, при котором снова включается напряжение на ТЭНы и загорается вторая красная лампочка.

Если уровень, воды в пароводяной рубашке окажется ниже допустимого, то реле защиты "сухого хода" разомкнет электрическую цепь питания и ТЭНы отключатся. Котел не будет нагреваться, и красные лампочки выключатся. Зеленая лампочка погаснет на станции управления, когда выключится на распределительном электрощите напряжсние.

1.9. ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ МАШИН

На каждую машину или тепловой аппарат завод-изготовитель выдает техническую документацию - эксплуатационную и ремонтную. Положение о системе технического обслуживания и ремонта торгового технологического оборудования введено в действие с 1 января 1981 г, и устанавливдет содержание указанных документов.

Эксплуатационная gокументация содержит руководство по эксплуатации, инструкции по технике безопасности, памятку по обращению с изделием, паспорт, формуляр и приложения (акты гарантийного ремонта).

Паспорт - документ, в котором указываются марка, заводской номер, назначение, краткая характеристика, комплектность и заключение о приемке оборудования.

Формуляр - документ, в котором приводятся основные параметры и технические данные изделия, обццие сведения, комплектность поставки, гарантийные обязательства, сведения о хранении, консервации, приемке и упаковке изделий, список возможных неисправностей в процессе работы и методы их устранения. Формуляр служит для ведения учета работы оборудования, неисправностей, норм расхода на ремонт и обслуживание за рабочий период.

К ремонтной gокументации относятся руководство по капитальному и текущему ремонту, нормы расхода материалов на ремонт и количество запасных частей.

Вся технологическая документация, полученная вместе с изделием, должна обязательно храниться на предприятии общественного питания у лиц, ко’орые несут материальную ответственность за данную машину.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. На какие группы подразделяется механическое оборудование, используемое на предприятиях общественного питания?
2. Какие материалы используются для изготовления машин?
3. Назовите основные части и детали машин.
4. Назовите способы механических передач.
5. Дпя чего соединяют обмотку электродвигатепя «звеэдой» ипи «треугольником»?
6. Назовите аппараты включения и защиты электрооборудования.
7. Почему непьзя допустить перегрузку и недогрузку машин?
8. Какая техническая документация выдается на каждую машину?

ГЛава 2

УНИВЕРСАЛЬНЫЕ ПРИВОДЫ

2.1. КЛАССИФИКАЦИЯ УНИВЕРСАЛЬНЫХ ПРИВОДОВ

На предприятиях общественного питания наряду с машинами, предназначенными для выполнения какой-либо одной операции, применяются универсальные приводы с набором сменных механизмов, выполняющих целый ряд операций по обработке продуктов.

Универсальные приводы используют преимущественно на неболыших предприятиях общественного питания, в мясных, овощных и кондитерских цехах.

Универсальньь приводом называется устройство, состоящее из электродвигателя с редуктором и имеющее приспособление привода горловины для подсоединения различных сменных механизмов. На редуктор с помощью эксцентриковых винтовых зажимов к горловине привода фиксируются попеременно сменные механизмы (СМ). Можно закреилять и попеременно работать разными по назначению съемными механизмами: мясорубкой, взбивалкой, овоњерезкой, мясорыхлителем и другими машинами. Благодаря такому количеству съемных механизмов привод получил название универсальный.

Применение универсальных приводов значительно повышает производительность труда, снижает капитальные затраты, увеличивает коэффициент полезного действия оборудования и др.

В настоящее время промышленность вынускает универсальные приводы П-11 и ПУ-0,6 для различных цехов предприятий пищевой промышлснности, а также приводы специального назначения П-1,1 для сравнительно небольшого ассортимента продуктов.

Аля работы в небольших столовых, а также на камбузах речных и морских судов используются универсальные малогабаритные приводы УММ-ПС или УММ-ПР. Источником энергии этих приводов может быгь переменный или постоянный ток.

Универсальный привод общего назпачения ПУ-0,6 выпускается двухскоростным с частотой вращения вала 170 и 1400 об/мин и олноскоростным с частотой вращения 170 об/мии и мощностью днигателя 0,6 кВт. Он имеет комплект сменных механизмов (табл. 2.1), которые могут иснользоваться на небольших предприятиях, где отсутствует цеховое деление приготовления продукции.

На больших предприятиях общественного питания, 1де имеется џеховое деление, применяют специализированные универсальные приводы ПУ-06, ПМ-1,1, ПХ-0,6, ПГ-0,6 и П-11 (табл. 2.2).

Привод ПМ-1,1, специализированный для мясо-рыбного цеха, выпускается в односкоростном или двухскоростном варианте, с частотой вращения вала 170 или 1400 об/мин и мощностью двигателя $1,1 \mathrm{kBt}$.

Привод ПМ-1,1 имеет комплект сменных исполнительных механизмов, которые могут быть использованы только н мясо-рыбных цехах предприятия.

Привод ПХ-0,6, специализиронанный для холодных цехов, состоит из односкоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в холодных цехах.

Привод ПГ-0,6, специализированный для горячих цехов, состоит из односкоростного привода $П-0,6$ и комплекта сменных исполнительных механизмов, которые могут быть использованы в горячих цехах.

Привод П-11 универсальный состоит из двухступенчатого соосного зубчатого редуктора и двухскоростного двигателя. Частота вращения приводного вала привода составляет 170 и 330 об/мин. На горловине привода расположена рукоятка с кулачком для крепления сменных исполнительных механизмов. Переключатель скоростей электродвигателя, пусковая кнопка и кнопка возврата теплового реле смонтированы на щульте управления.

Все выпускаемые приводы и сменные механизмы к ним имеют буквенные и цифровые обозначения: П обозначает привод, У - универсальный, М -- мясной цех, X - холодный цех, Г - горячий цех. Цифры, следующие за буквенными обозначениями, 24

Смеиные механизмы: взбивалка косторез мороженица мясорубка овощерезательный механизм протирочный механизм размолочный механизм рнбоочиститель соковыжималка фаршеменалка	$\begin{gathered} - \\ - \\ \text { MC2-70 } \\ \text { MC10-160 } \\ - \\ - \\ - \\ - \end{gathered}$	MC15-30 MC2-150 - - MC12-15 MC17-40 MC8-150	$\begin{gathered} \mathrm{MC} 4-20 \\ - \\ \mathrm{MC}-10 \\ - \\ \mathrm{MC} 27-40 \\ \mathrm{MC7}-100 \\ - \\ \overline{\mathrm{MC}}-40 \\ - \end{gathered}$	- MC2-70 - - - - -	ММП-11-1 - МОП-11-1 МИП-11-1 \longrightarrow -
Механизм для иарезания: вареных овощей свежих овощей на брусочки свежих овощсй мяса для бефстроганов	MC18-160 MC28-100 -		$\begin{gathered} \mathrm{MC} 22-160 \\ - \\ \mathrm{MC} 27-40 \\ - \end{gathered}$	-	$\begin{gathered} \text { - } \\ \text { МБ } \\ \text { МБ-11-1 } \end{gathered}$
Механизм для дробления орехов и иротирания мака	-	-	-	-	M \triangle-11-1
Механизм для перемешивания салатов	-	-	MC.25-200	-	-
Многоцелевой механизм	MC4-7-9-20	-	-	MC4-7-8-20	МВП-11-1
Мясорыхлитель,	MC19-1400	MC19-1400	-	-	МРП-11-1

Таблица 2.2. Технические характеристики приводов

Параметр	Марка привода				
	ПУ-0,6	ПМ-1,1	ПХ-0,6	ПГ-0,6	П-11
Мощность электродви- гателя, кВт	0,6	1,1	0,6	0,6	$0,6 \ldots 0,8$
Габаритные размеры,					
мм:					
длина	530	530	530	530	525
ширина	280	280	280	280	300
высота	310	310	310	310	325
Масса, кг	60	60	60	60	41

указывают номинальную моцность электродвигателя привода в киловатгах.

Механизмы сменные (МС), комплектуемые к универсальному или специализированным приводам, имеют определенный порядковый номер: 2 - мясорубка, 3 - соковыжималка, 4 - взбивалка, 5 - картофелечистка, 6 - мороженица, 7 - протирочный механизм, 8 - фаршемешалка, 9 - куттер, 10 - овоццрезка, 11 - тележка или подставка для привода, 12 - размолочный механизм, 13 - приспособление для чистки ножей и вилок, 14 - колбасорезка, 15 - косторез, 16 - точило, 17 - рыбоочиститель, 18 - механизм для фигурного нарезания овощей, 19 рыхлитель мяса, 20 - механизм для взбивания, 21 - котлетоформовочный механизм, 22 - механизм для нарезания вареных овощей, 24 - просеиватель, 25 - механизм для перемешивания салатов и винегретов, 27 - механизм для нарезания свежих овощей, 28 - механизм для нарезания сырых овощей брусочками.

Цифра, следующая за порядковым номером механизма, показывает величину средней производительности. Например, МС2-70 означает, что механизм сменный (мясорубка) производительностью до 70 кг/ч. Кроме того, некоторые сменные механизмы обозначаются двумя или более цифрами. Например, МС-4-7-8-20 свидетельствует о многоцелевом назначении механизма: 4 - взбивать продукт, 7 - протирать продукт, 8 - перемешивать фарш; 20 - вмес'имость бачка.

2.2. ПРАВИЛА ЭКСПЛУАТАЦИИ И ТЕХНИКИ БЕЗОПАСНОСТИ УНИВЕРСАЛЬНЫХ ПРИВОДОВ

Подготовку универсального привода к работе проводит повар, за которым закреплена ланная машина. Перед включением машины он обязан выполнить требования техники безопасности и соблюдать при работе безопасность труда. Необходимо проверить правильность установки универсального привода, исправность сменного механизма и правильность его сборки и крепления с помощью винтов-зажимов.

При установке корпуса сменного механизма в горловине привода контролируют, чтобы конец рабочего вала механизма попал в гнездо привода вала редуктора универсального привода. Также проверяется наличие ограждающих устройств, заземления или зануления.

Убедившись в исправности сменного механизма и тривода, производят пробный пуск на холостом ходу. Привод должен работать с небольшим шумом. В случае неисправности привод останавливают и устраняют причину неисправности. Устанавливать частоту вращения разрешается только перед включением машины в работу.

Подготовленные продукты загружать в сменные механизмы нужно только после вклчения универсального привода; исключение составляет механизм для взбивания, в бачок которого сначала загружают продукты, а затем включают универсальный привод.

При работе запрещается перегружать сменный механизм проАуктами, так как это приводит к ухудшению качества или порче продуктов, а также к поломке машины. Недогрузка СМ приводит к снижению ресурса работы оборудования и перерасходу электроэнергии. Особое внимание нужно уделять строгому соблюдению правил техники безопасности при работе с универсальным приводом, так как неосторожность приводит к травмам обслуживающего персонала.

Категорически запрещается работать на машине без наличия соответствующих предохранительных устройств, а также подталкивать иродукты в горловину сменного механизма руками.

Осмотр универсального привода и установленного сменного механизма, а также устранение неполадок разрешается проводить только после выключения электродвигателя универсального привода и его полной остановки.

После окончания работы универсальный привод выключают и отключают от электросети. Только теперь можно снимать сменный механизм для разборки, промывки и сушки.

Профилактический и текущий ремонт универсального привода и сменных механизмов проводят специальные мастера согласно заключенному договору.

Привоg ПМ-1,1 (рис. 2.1) с комплектом сменных механизмов предназначен для механизации процессов переработки мясных и рыбных продуктов на предприятиях общественного питания.

В комплект привода входят:

- привод Π-1,1 (рис. 2.1, a) для приведения в действие сменных механизмов;
- размолочный механизм МС12-15 (рис. 2.1, б) для размалывания сухарей, перца и других специй;
- фаршемешалка МС2-150 (рис. 2.1, в) для приготовления и взбивания фарша;
- мясорыхлитель МС19-1400 (рис, 2.1, г) для рыхления и смешивания порционных кусков мяса;

Рис. 2.1. Привод ПМ-1.1 для мясорыбного цеха:
a - привод П-1.1: б - размолочный механизм MC12-15; в - фаршемешапка MC8-150; r - рыхлитель MC19-1400; g - мясорубка МС2-150

28

Рис. 2.2. Привод универсальный общего назначения ПУ-6 с комплектом сменных механизмов:

а - привод ПУ-0,6; б - мясорубка МС2-70; в - многоцелевой механизм МС4-7-8-20; г - мясорыхлитель MC19-1400; g - механизм МС18-160; е - овощерезка МС10-160; ж - механизм МС28-100

- мясорубка МС2-150 (рис. 2.1, g) для приготовления мясного и рыбного фаршей;
- рыбоочиститель МС17-40 для очистки рыбы и косторез МС15-30 дяя измельчения костей.

Привоg универсальный ПУ-0,6 (рис. 2.2) с комплектом сменных механизмов предназначен для механизации основных процессов переработки пищевых продуктов на предприятиях общественного питания.

Таблица 2.3. Технические характеристики сменных механизмов

Параметр	Сменный механизм						
	O - - -	+	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\sim} \\ & \underset{\Sigma}{U} \end{aligned}$	$\frac{8}{9}$ $\frac{9}{U}$ $\frac{1}{2}$	8 \square \vdots di U		
Габаритные размеры, mм: мина ширина высота	$\begin{aligned} & 530 \\ & 280 \\ & 310 \end{aligned}$	$\begin{aligned} & 310 \\ & 310 \\ & 200 \end{aligned}$	$\begin{aligned} & 580 \\ & 480 \\ & 660 \end{aligned}$	$\begin{aligned} & 420 \\ & 380 \\ & 410 \end{aligned}$	$\begin{gathered} 375 \\ 130 \\ 225 \end{gathered}$	$\begin{aligned} & 310 \\ & 260 \\ & 320 \end{aligned}$	$\begin{aligned} & 318 \\ & 242 \\ & 360 \end{aligned}$
Macca, $\mathbf{~ K r ~}$	50	6.5	28	12	10	8	15
Производительность. кг/ч	-	$70 \ldots 80$	150	160	1400	160	100

В комплект (табл. 2.3) входят:

- привод П-0,6 для приведения в действие сменных механизмов (рис. 2.2, a);
- МС2-70 - мясорубка для приготовления мясного и рыбного фаршей (рис. 2.2, б);
- МС4-7-8-20 - многоцелевой механизм для взбивания кондитерских смесей, картофельного пюре, замешивания жидких видов теста, перемешивания различных фаршей (рис. 2.2, в);
- МС19-1400 - мясорыхлитель для рыхления и смешивания порционных кусков мяса (рис. 2.2, г);
- МС18-160 - механизм для нарезания вареных овощей для салатов, винегретов и гарниров (рис. 2.2, g);
- МС10-160 - механизм для нарезания сырых и вареных овощей (рис. 2.2, е);
- MC28-100 - механизм для нарезания сырого картофеля на брусочки (рис. 2.2, ж).

Привоg универсальный Π-11 (рис. 2.3) с комплектом сменных механизмов предназначен для механизации основных процессов переработки пищевых продуктов.

30

Рис. 2.3. Привод универсальный П-11:
а - схема; 6 - вид сбоху; 1 - редуктор; 2 - картер; 3 - зубчатое колесо; 4 приводной вал; 5 - электродвигатель; 6 - переключатель скоростей: 7 - ко*ух; 8 - фиксатор

Таблица 2.4. Возможные неисправности универсальных приводов, их причины и слособы их устранения

Неисправность	Причина	Способ устранения
При включении привода электродвигатель не вращается и издает гудение	Отключена одна фаза или перегорел предохранитель	Выклочит'ь привод и пригласить мастера, обслуживающего данное оборудование
Винты-зажимы плохо закрепляют сменные механизмы в горловине привода	Загрязнены резьбовые отверстия горловины привода или винты-зажимы. Износ резьбы горловины привода или винтов-зажимов	Прочистить и смазать отверстия горловины привода и винтызажимы. Приюласить мастера, обслуживающего данное оборудование
При включении привод созддет повышенный шум или стук в редукторе	Отсутствует смазка в редукторе. Поломка редуктора	Проверить уровень смазки и при необходимости долитъ ее. Выключить привод и пригласить мастера, обслужнвающего данное оборудование

В комплект привода универсального Π - 11 входят:

- собственно привод П-11;
- мясорубка ММП-11-1;
- многоцелевой механизм МВП-11-1;
- овощерезательный протирочный механизм МОП-11-1;
- механизм МАП-11-1 для дробления орехов и протирания мака;
- механизм МИП-11-1 для измельчения сухарей и специй;
- механизм МРП-11-1 для рыхления мяса;
- механизм МБП-11-1 для нарезания мяса набефстроганов.

Возможные неполадки, возникающие при работе универсальных приводов, и способы их устранения даны в табл. 2.4.

2.3. СМЕННЫЕ МЕХАНИЗМЫ УНИВЕРСАЛЬНЫХ, СПЕЦИАЛИЗИРОВАННЫХ И МАЛОГАБАРИТНЫХ ПРИВОДОВ

Мясорубка МС2-70 (рис. 2.4) предназначена для приготовления мясного или рыбного фарша. Она состоит из корпуса, шнека, набора ножей и решеток, а также загрузочной тарелки с толкателем.

Корпус мясорубки имеет хвостовик 1, с помощью которого он соединяется с редуктором привода. Внутри корпуса имеются винтовые канавки, которые облегчают подачу мяса и не дают ему вращаться вместе со шнеком 2 , а также шпонка, удерживаюцдая решетки и подрезной нож от проворачивания. Шнек представляет собой однозаходный червяк с переменным шагом витков. Хвостовик шнека заканчивается шипом, с помощью которого он соединяется с валом привода. Палец шнека имеет две лыски, благодаря которым передается вращение ножам.

Массогабаритные характеристики мясорубки MC2-70

Габаритные размеры, мм:
длина 310
ширина 310
высота 210
Масса, кг 6,5

32

Hןп川川ля аксплуатации мясорубки МС2－70．Полго－ тонку（мм（шнюо механизма проводит повар，за ко＇горым закрепле－

 ле॥ ш！ぃкл смазывают пищевым несоленым жиром，нотом уста－ нанлиниют шнек в корпус и поворачивают до тех пор，пока шии хпи＂тинкя пнека не попадет в гнездо выходного вала редуктора примими．Затем на палец шнска устанавливают сменные детали мнсणуубки в опрелеленной последоватсльности и закрепляют Прржлмннй І＇айкой（рис．2．4）．
（＇юрку сменного механизма закапчивают установкой на корпту－ Со ииру жчной чаши 6 ，которая фиксируется специальным винтом．

Мжсо и рыбу перед загрузкой в мясорубку освобождают от ко－ стюи．жил，џленок и нарезают куски массой не более 100 г．

Іри пропускании жилистого мяса через мясорубку ее перио－ Аичютки пстанавливают и очищают ножи и решетки．

Мясо загружают в мясорубку только после ее включения и пронюрки на холостом ходу．Проталкивать мясо в горловину та－ релки можно только с помощью деревянного толкателя，который не рпиюшается прижимать к шнеку．

Рис．2．4．Мясорубка МС2－70：
1 －хвостовик； 2 －шнек； 3 －ножевые инструменты； 4 －прижимная гайка；
5 －упорное копьцо； 6 －загрузочная чаша； 7 －топкатепь

Таблица 2.5. Возможные неисправности мясорубок, их причины
и способы устранения

Неисправность	Причина	Способ устранения
Мясорубка не режет, а давит мясо	Неправильно установ- лены двухсторонние ножи. Ослабло креп- лене нажимной гайки	Разобрать мясорубку и правильно устано- вить ножи
Фарш выходит из мясорубки нагретый	Рещетки и ножи не очищсны от пленок и сухожилий. Затуплены ножи	Разобрать мясорубку, очистить ножи от пле- нок и сухожилий. Установить новые ножи

Не допускается эксплуатировать мясорубку на холостом ходу, так как это приводит к быстрой порче ножей. Категорически запрещается измельчать на мясорубке сухари, кости, соль, так как это выводит из строя сменные механизмы или приводит к травмам обслуживающего персонала. После окончания работы мясорубку разбирают, промывают и просушивают.

Возможные причины неисправностей мясорубок и способы их устранения приведены в табл. 2.5.

Устройство и принцип действия мясорубок ММП-11-1, МС2150 и УММ-2 аналогичны устройству и принципу действия мясорубки МС2-70.

Многоцелевой сменный механизм МС4-7-8-20 (рис. 2.5) можно использовать для различных целей; взбивать кондитерские смеси, замешивать жидкое тесто, протирать картофельное пюре и супы, перемешивать фарши и др.

Многоцелевой механизм МС4-7-8-20 состоит из корıуса, в котором расположен планетарный редуктор 4 с коробкой скоростей 5, сменных баков l и сменных рабочих органов.

В редукторе находятся коническая зубчатая и планетарные передачи, а также хвостовик, с помощью которого механизм укрепляется на приводе.

Корпус механизма имеет кронштейн 7 , на котором устанавливаются сменные баки для замешивания и взбивания продуктов или обечайки с ситом для протирания.

На редукторе находится рукоятка переключения скоростей 6 рабочего вала механизма. K механизму прилагаются три взбива-
＇т•лы 2 －прутковый，решетчатый и замкнутый，а также мешалка н прмирочная крыльчатка，

I 14 рыбочем валу редуктора установлена специальная муфта мля соелинения ее со сменными механизмами．

॥рдвила эксплуатации многоцелевого меха－ ии им а МС4－7－8－20．В горловину универсального привода уста－ ॥ぃиииают хвостовик сменного механизма и закрепляют его бол－ اぃми．НА кронштейне редуктора устанавливают и откидным вин－ том 3 （фиксируют бак，закрываемый сверху крышкой．На рабочий шл родуктора с помощью муфты закрепляют один из трех прила－ l＇mмmх к механизму сменных взбивателей．

؛ 孔иолняют бак на $3 / 4$ объема продуктами，после чего рукоятку ॥среключения скоростей выставляют на требуемую скорость вра－ дцпиия．

ГІосле включения двигателя универсального привода рабочий иял со сменными механизмами получает вращательное движение ぃкрут собственной оси и вокруг оси бака（планетарное движе－ ни（）．Прололжительность перемешивания зависит от свойств об－ ןпотываемого продукта и составляет в среднем $15 \ldots 20$ мин．

Аля перемешивания жидкого теста следует использовать смен－ ный механизм замкнутый，для взбивания белков и сливок－прут－ кимый，Аля взбивания крема и майонеза－решетчатый．

Сменный механизм gля рыхления мяса МС19－1400（рис．2．6）川юю»назначен для надрезания порционных кусков мяса перед об－
l＇ис：2．5．Многоцелевой михинизм MC4－7－8－20：

1 бик： 2 －сменный взбиватель； i）оккидной винт； 4 －планетарный ॥плукıор； 5 －коробка скоростей； （1）рукпятка переключения скорос－ ни，／кронштейн

Рис. 2.6. Механизм МС19-1400:
a-вид сбоку; 6 - вид спереди: 1 - гребенка; 2 - корпус; 3 - каретка; 4 фреза; 5 - кольцо; 6 - вал; 7 - шестерня; 8 - зубчатое колесо

жариванием. Он состоит из гребенки 1, корпуса 2, каретки 3 с лвумя вдлами 6 и верхнего кожуха.

Корпус рыхлителя имеет хвостовик и редуктор, из которого выходят два приводшых вала. Каретка состоит из двух половин, соединснных между собой с помощью петель и защелок. В каретке установлены два рабочих вала, на которых установлены дисковые фрезы 4. Сверху защитный кожух закрывает рабочие органы мясорыхлителя.

Технические характеристики механизма для рыхления мяса MC19-1400

Производительность, порций/ч. 1400
Габаритные размеры, мм:
длина 375
ширина 130
высота 225
Масса, кг 10

Правила эксплуатации сменного механизма МС19-1400. Сборку сменного механизма мясорыхлителя проводят следующим образом. Сначала на приводе устанавливают и закрепляют корпус рыглителя, потом берут в каждую руку по половине каретки и соединяют их так, чтобы штифты петель вошли в пазы. Затем соединенные половины фиксируют защелкой и устанавливают в корпус таким образом, чтобы муфты приводных валиков каретки вошли в пазы рабочих валов редуктора. После
＇Пирки мясорыхлитель закрывают защитным кожухом и проверя－ wi purи＇у сменного механизма на холостом ходу．

I Імлююовленнос для обработки порционное мясо опускают в川июмиое окно рыхлителя，где оно захватывается вращающи－ ми＇я 中резами，надрезателями и поступает в подготовительную ＇ぃןу．Мя лучшего приготовления мяса можпо повторно пропус－ џиぃ（ю через рыхлитель，повернув его предварительно на 90° ．

आозможные причины неисправностей，возникающих при эк－ －॥лу，lации сменного механизма，и способы их устранения привс－人יוи в табл．2．6．
：Заирещастся проталкивать мясо руками，так как можно трав－ миринать руки．После окончания работы сменный механизм сни－ миют с привода，разбирают，прочицают от остатков мяса，промы－ ぃぃот в горячей воде и иросушивают．

Гloсле просушивания гребенки，валы и фрезы смазывают несо－ лぃымм пищевым жиром．
＇「＇екуцций ремонт и техническое обслуживание проводит мас－ ‘мю，ко＇орый периодически контролирует исправность гребенок， мтику фрез，смазку редуктора и др．

Сменный механизм gля нарезания вареных овощей МС18－

 160 （рис．2．7）входит в комплект универсального привода ПУ－0，6 и прмназначен для нарезания вареных овощей ломтиками и куби－ кими．Он состоит из привода，корнуса，ножа 3，ножевой фигурной ןюыетки 2 и загрузочного бункера 5 с крышкой．Привод сос＇тоит из электродвигателя и конического редуктора －вер＇тикальным рабочим валом，на котором крепится плоский

Таблица 2．6．Возможные неисправности сменного механизма МС19－1400，их причины и способы устранения

Неисправность	Причина	Способ устранения
I locле включения принода мясорьгли－ rini me работает， ＇Аı．ино гудение мотора	Погнуты зубья фрез или гребенок	Устранить деформа－ цию или заменить фрезы или гребенки
l 1 м＇лに загрузки мяса川ぃхлитель остановился	Загружен болышой кусок мяса	Остановить мясорых литель，извлечь мясо и измельчить его
Dыботы мясорыхлителя 1оиринождается боль－ ними ноэерями сока	Затуплены фрезы	Заточить или заме－ нить фрезы

Рис. 2.7. Механизм для нарезания вареных овощей МС18-160:
1 - конический редуктор; 2 - ножевая фигурная решетка; 3 - ппоский нож;
4 - толкатель; 5 - загруэочный бункер

нож с двумя режущими лезвиями. Верхняя часть механизма представляет собой тарелку с авумя разгрузочными отверстиями. Одно из них предназначено для выгрузки нарезанных овощей, Аругое - для удаления крошек, прилипших к ножу.

Овощи загружают в бункер 5, прижимают к ножевой решетке 2 массой толкателя 4. Нож 3 отрезает от клубня ломтик и продавливает его через лезвие решетки.

Технические характеристики механизма для нарезания овощей МС18-160

Производительность, кг/ч 160
Частота вращения ножа, об/мин 62
Толщина нарезанных ломтиков, мм $4 . . .6$
Габаритные размеры, мм: длина 420
пирина 380
высота 410
Maсса, кг, не более 20

38

I ，اقлица 2．7．Возмажные неисправности сменного механизма MC18－166 для нарезания вареных овощей，их причины
и в：пособы устранения

Неисправность	Причина	Способ устранения
Мııииа не режет， ＂Мн＂т продукт	Тупой плоский нож	Заточить плоский нож
I lıрезание продукта ку－ Пиками осуществляется меменно	Тупые лезвия ре－ шшетки	Заменить решетку

Правила эксплуатации механизма для нареза－ иия вареных овощей МС18－160．Перед началом работы ииоверяют правильность сборки овощерезательного механизма，а также надежность крепления отдельных узлов и механизма в це－ лом．После выполнения техники безопасности и правил безопас－ нис＇ти труда проводят проверку，наладку и осмотр механизма при нключенном электродвигателе привода．Устранив замеченные не－川с＂равности，закладывают продукты，производят их обработку．

Возможные причины неисправностей，возникаюцих ири экс－ ॥лудтации механизма для нарезания вареных овощей МС18－160， и сюособы их устранения приведены в табл．2．7．

Сменньй механизм МС28－100（рис．2．8）предназначен для фи－ tурного нарезания сырых овощей．Он состоит из редуктора 4 ، хвостовиком 7 ，рабочей камеры 13 ，загрузочного бункера 12 и кぃмилекта ножевых решеток．

Рабочая камера механизма имеет вертикальный цилиндр（ста－ кли） 6 и отлита как одно целое с загрузочной воронкой 11 ．

Внугри вертикального цилиндра движется поршень 3，в нижнем шюце которого находится пластинка с пальцами－пуансонами ляя поталкивания частичек продукта в отверстия ножевой решетки．

Редуктор сменного механизма имеет червячную передачу 5 и кривошипно－шатунный механизм，шток 9 которого соединен с וирынем．

Сぃемные ножевые решетки устанавливаются и закрепляются ،＂ぃ＇чу под рабочей камерой машины．

॥равила эксплуатации сменного механизма M（＂28－100．Перед началом работы на машине вынолняюı иравила ＇ぃхиики безопасности．Особое внимание обращают на санитарное и＇wхиическое состояние，а также на прочность крешения маши－ ॥॥ ॥＇чиько потом включают и проверяют ее на холостом ходу．

Рис. 2.8. Сменный механизм для нарезания сырых овощей MC28-100: а - кинематическая схема; 6 - общий вид; 1 - ножевая решетка; 2 - ципиндр: 3 - поршень; 4 - редуктор; 5 - червячная передача; 6 - стакан; 7 хвостовик вапа; 8 - коленчатый вал; 9 - шток; 10 - соединитепьная тяга; 11 - загрузочная воронка; 12 - загрузочный бункер; 13 - рабочая камера; 14 - цилиндрическая решетка; 15 - прямоугольная решетка

После нключения двигателя привода начинает совершать возвратно поступательное движение шток с поршнем, расположенный внутри камеры обработки. При движении поршня вниз он закрывает загрузочное отверстие камеры обработки, при движении вверх -- открывает. Таким образом, продукты в камере продавливаются поршнем через ножевую решетку.

Овощи, предназначенные для обработки в машине, предварительно подготавливают: сырые промывают и очищают, крупные разрезают на несколько частей.

Нужно помнить, что загружать овощи в рабочую камеру можно только после включения двигателя.

Категорически запрещается поправлять или проталкивать продукты руками, а также удалять крошки или застрявшие ломтики во время работы машины.
: औмону ножевой решетки можно производить только после ॥口лाой остановки двигателя привода.

I loсле окончания работы выключают электропривод, разбираแ" (менный механизм и тщательно промывают все его рабочие川н"ти, затем протирают и просушивают.

Технические характеристики сменного механизма для нарезания сырых овощей МС28-100

\qquad
l'иПдритные размеры, мм: мина 318
пирина 242
нысотá 360
Macca, kr 20

Соковыжималка МСЗ-40 (рис. 2.9) предназначена для выжимапия сока из ягод, овощей и фруктов. Она состоит из корпуса 1 , ниека 5, съемных сеток 6 и загрузочной чаши 4.

Корпус 1 изготовлен в виде полого усеченного конуса, на ко'трмй сверху устанавливается загрузочная чаша. Корпус имеет ^вя разгрузочных окна: для сливания сока и выхода жома. Влажии"ъ жома регулируется специальным винтом 11.

Внутри корпуса установлен однозаходный конусный шнек, а также съемная сегка 6. Аля присоединения к приводу сменный

Рис. 2.9. Соковыжимапка МСЗ-40:
1 корпус; 2 - приводной вал; 3 - рабочая камера; 4 - загрузочная чаша; ๑. Lннек; 6 - сетка; 7 - подшипник; 8 - лоток для удаления жома; 9 - сливнын устройства: 10 - откидной болт; 11 - регулировочный винт

механизм имеет хвостовик, который прикрепляется к корпусу механизма двумя откидными болтами 10.

Соковыжималка комплектуется тремя съемными сетками с диаметром отверстий $2,2,5$ и 3 мм и деревянным толкателем.

Технические характеристики соковыжималки МСЗ-40

Производительность, кг/ч ... 40
Габаритные размеры, мм:
длина ... 415
ширина .. 310
высота .. 260
Macca, кг... 10
Правила эксплуатации соковыжималки МСЗ-40. Перед началом работы проверяют санитарное состояние сменного механизма. При сборке механиэма его хвостовик закрепляют в горловине привода. Затем в корпус вставляют сетку 6 с отверстиями нужного диаметра, шнек и соединяют с установленным хвостовиком. На холостом ходу проверяют механизм.

Фрукты, ягоды и овощи предварительно хорошо промывают, крупные экземпляры нарезают и удаляют косточки. Включают привод и подготовленные продукты кладут в загрузочную чашу, постепенно проталкивая их толкателем к шнеку. Вращающийся конусообразный шнек захватывает продукты, прижимает их к сетке и выжимает сок, который сливается в подставленную емкость.

Оставшиеся в корпусе продукты продвигаются шнеком к разгрузочному окну для выхода жома и по специальному желобу поступают в емкость. Если через охно выходит жом повышенной влажности, нужно с помощью регулировочного винта уменьшить выходное отверстие.

В процессе работы соковыжималки категорически запрещается рукой проталкивать продукты к шнеку, так как можно получить травму руки.

После окончания работы выключают привод, разбирают сменный механизм, очищают его от остатков продуктов, промывают горячей водой и оставляют аля просушки. Текущий ремонт и обслуживание проводит мастер, обслуживающий данное оборудование согласно договору.

Сменный механизм gля перемешивания салатов и винегреmов МС25-200 (рис. 2.10) предназначен для перемешивания компонентов салатов и винегретов. Он состоит из рабочей камеры 3 и червячного редуктора 2. Соединение бачка и редуктора осуще-

Рис. 2.10. Сменный механизм MC25-200:
а - общий вид; б - вид ө раэреэе; 1 - хвостовик; 2 - редуктор; З - рабочая камера; 4 - рабочий вал; 5 - червячная передачя; 6 - крышка: 7 - ребро; 8-бачок: 9 - корпус редуктора

сггляется с помощью двух фланцев. Бачок 8 изготовлен из нержавеющей стали. На внутренней поверхности бачка установлены ребра 7, способные равномерно перемешивать продукты.

Через открытую часть бачка производятся загрузка и выгрузка иродукта. Бачок двумя винтами зажимов крепится на рабочем валу 4 редуктора под углом 45° к вертикали. Таким образом, рабочая камера вместе с продуктом вращается в наклонном положении.

> Технические характеристики сменного механизма для перемешивания салатов и винегретов MC25-200
Производительность, кг/ч 200
Вместимость бачка, кг 10
Частота вращения бачка, об/мин 28
Габаритные размеры, мм:
длина 360
ширина 360
высота 490
Macca, kr 12

Правила эксплуатации сменного механизма МС--25-200. При подготовке к работе в горловину привода устаП،вливают и закрепляют редуктор 2. Потом фланцами при помощи двух зажимов подсоединяют к нему бачок под углом 45° к н"ріикали.

В бачок 8 загружают продукты массой до 8 кг и только потом включают электродвигатель привода. Бак с продуктами будет вращаться с частотой 28 об/мин, а продукты перемешиваться с помощью его ребер.

Перемешивание рекомендуется проводить не более 2 мин, после чего надо выключить электродвигатель привода, ослабить вин-ты-зажимы и, повернув редуктор в горловине привода, опрокинуть бачок. Перемешанные продукты выгружают в подставленную емкость.

После разгрузки вновь устанавливают бачок в рабочее положение, закрепляя редуктор в горловине привода и, загрузив продукцией, включают привод и перемешивают следующую порцию продуктов.

После окончания работы отключают электродвигатель привода и только после нолной остановки бачка приступают к снятию его для промывания и просушивания.

Сменный механизм МС12-15 (рис. 2.11) предназначен для измельчения сухарей, соли, сахара, перца, кофе и других продуктов.

Сменный механизм МС12-15 состоит из двух частей: кортьса 3 и хвостовика 5. Корпус имеет загрузочный бункер 4 с иредохранительной решеткой и крышкой, а также неподвижный терочный диск, разгрузочное окно 1 и регулятор степени помола продукции. Хвостовик имеет горизонтальный вал, на котором размещены шнек для подачи продуктов и подвижный терочный диск. Корпус соединяется с хвостовиком посредством откидных винтов 2. Степень помола зависит от расстояния между неподвижным и подвижным терочными дисками. Это расстояние устанавливается с помощью винта регулятора, ко-

Рис. 2.11. Сменный механизм MC12-15 для измельчения сухарей и других продуктов:
1 - разгрузочное окно; 2 - откидной винт: 3-корпус; 4 - загрузочный бункер; 5 хвостовик

Технические характеристики сменного механизма для измельчения сухарей и других продуктов МС12-15

Производительность, кг/ч Ao 15
Габаритные размеры, мм:
мина 345
ширина 275
высота 365
Macca, kr 12
Правила эксплуатации сменного механизмаМС12-15. В горловину привода усташавливают хвостовик сменно-но механизма и посредством винтов-зажимов подсоединяют кнему корпус. Затем на корпусе с помоцью регулировочного вин-то устапавливают требуемую степень шомола, включают элекрро-лвигатель привода, закладывают в загрузочный бункер продукты11 закрывают его крышкой.

Из загрузочного бункера продукты поступают к вращающему('я шнеку, подхватываются им, прижимаются к поверхности неподвижного терочного диска и измельчаются. После окончания юфботы электродвигатель привода выключают, разбирают сменぃぃй механизм, прочищают его специальной щеткой и протирают сухой тканью. Рекомендуется крупные куски продукта раскалыныть и просушивать, так как в противном случае возрастет прололжительность иэмельчения,

Запрещается рдботать на сменном механизме с открытой крышкой загрузочного бункера и проталкивать или поправлять щроукты руками.

Сменный механизм МС10-160 (рис. 2.12) предназначен для нар"зания сырых овощей ломтиками и соломкой. Приводится в дей("иие универсальным приводом ПУ-0,6.
Технические характеристики сменного механизма для нарезания овощей ломтиками и соломкой MC10-160
Производительность, кг/ч 160
!астота вращения ножа, об/мин 170
Голцина нарезаемых ломтиков, мм 2... 3
l'лбаритные размеры, мм: мина 420
пирина 380
нысота 410
Macca, kT 20

Рис. 2.12. Механизм МС10-160 для нарезания сырых овощей ломтиками и соломкой:

а - схема механизма; 6 - вид сверху: 1 - разгрузочное окно; 2 - зажимной винт; 3 - шпонка; 4 - загрузочный бункер; 5 - корпус; 6 - хвостоөик; 7 вал: 8 - нож; 9 - регулировочная гайка; 10 - диск

Механизм состоит из литого корпуса с разгрузочным окном 1 , улиткообразного загрузочного бункера 4, прижимаемого к корпусу 5 откидным винтом, и диска 10 со сменными ножами 8. Рабочими органами механизма служат нож для нарезания овощей соломкой, а также диск и ножевая колодка с двумя плоскими ножами для нарезания овощей ломтиками. Диск имеет регулировочную гайку 9, которая регулирует толщину нарезания овощей. При вращении гайки изменяется расстояние межау поверхностью диска и ножевыми колодками.

Сменный механизм яля нарезания сырых овощей МС27-40 (рис. 2.13) предназначен для нарезания огурцов, помидоров, редиса, лимонов и лука ломтиками. Этот механизм приводится в действие универсальным приводом ПХ-0,6.

> Технические характеристики сменного механизма дпя нарезания сырых овощей МС27-40
Производительность, кт/ч 40
Частота вращения ножа, об/мин 60
Толщина нарезаемых ломтиков, мм 8
Габаритные размеры, мм:
Алина 510
ширина 335
высота 260
Macca, кг 16

Механизм для нарезания сырых овощей МС27-40 состоит из корпуса, загрузочного бункера 2, дискового ножа 1, редуктора 3, нодвижной платформы и точильного приспособления. Редуктор со("тоит из червячной и зубчатой конических пар. Червячная пара приводит в движение загрузочный бункер, коническая пара - дисковый нож. Под загрузочным бункером установлена платформа, которая специальным винтовым устройством поднимается или опускается, регулируя таким образом толщину отрезаемого ломтика. Загрузочный бункер имеет четыре ячейки разных диаметров и рормы.

При включении электродвигателя загрузочный бункер и дисковый нож вращаются в противоположные стороны вокруг соб("твенных осей. Овощи загружаются в ячейки и продвигаются к

σ
Pис. 2.13. Сменный механизм для нарезания сырых овощей MС27-40: " • принцип работы нарезающего устройства; б - схема механизма: 1 - дискивый нож; 2 - загрузочный бункер; 3 - редуктор

ножу, который последовательно отрсзает от них ломтики. Hapeзанные ломтиками продукты проходят через щель между диском и столом и падают вниз в подставленную емкость.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как устанавливаются и крепятся сменные исполнительные механизмы к универсальному приводу?
2. Какие правила безопасности нужно соблюдать при работе с универсальными приводами?
3. В чем преимущества универсальных приводов перед индивидуальными?
4. Назовите сменные механизмы к универсальным приводам $П У-0,6, ~ П Г-0,6, ~ П Х-0,6$.
5. Почему запрещается разбирать сменный механизм при включенном электродвигателе?
6. Расшифруйте маркировку сменных механизмов: МС6-10, MC25-200, MC4-7-8-20, MC27-40, MC28-100.
7. Кто имеет право работать и производить текущий ремонт универсального привода?
8. О чем свидетельствует повышенный шум или стук в редукторе и что в этом случае необходимо сделать?

Глaba 3

ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ ОВОЩЕЙ

3.1. СПОСОБЫ ОЧИСТКИ ОВОЩЕЙ

На предприятиях общественного питания первичная обработка овощей производится по следующей технологической схсме: сортировка, мытье, очистка, доочистка, сульфатация (обработка очищенного картофеля от потемнения) и измельчение.

Все процессы первичной обработки овоцей, кроме лоочистки, могут быть механизированы. Степень, механизации процессов зависит от типа предприятия. На крупных предириятиях общественного питания устанавливаюю поточные линии.

Существует несколько способов очистки овощей от кожури: механический, термический, щелочной, паровой и комбинированный.

При механическом способе очис'ка овощей происходит за счет трения их о шерохова'тую поверхность рабочих органов машины при одноврсменном интенсивном перемешивании и смыве снятой кожуры водой в картофелеочистительных машинах.

При menловом способе очистки овощи обжигают в цилиндрической печи с вращающимся керамическим ротором. Температура обжига составляет $1100 \ldots 1200^{\circ} \mathrm{C}$, глубина обработки не превышает 1,5 мм. После обжига овощи поступают в овощемоечную машину, в которой кожура очищается ще́лочными валками и смывается водой. Продолжительность тепловой обработки для лука $3 \ldots 4$ с, для моркови - $5 \ldots 7$ с, для картофеля - $10 \ldots 12$ с. В качестве топлива для печи могут быть использованы как газ, так и :злектричество или жидкое топливо. По сравнению с другими способами термический способ очистки картофеля и корнеплодов лает значительно меньший процент отходов.

При щелочном способе очистки картофель предварительно нагревают в воде до температуры $48^{\circ} \mathrm{C}$, а затем обрабатывают креп-

ким щелочным раствором, нагретым до $100^{\circ} \mathrm{C}$, который размягчает поверхностный слой клубней. В барабанной моечной машине клубни очищаются от наружного слоя и отмываются от щелочи. Продолжительность обработки 3 ... 8 мин.

При паровом способе очистки картофель обрабатывают паром в автоклавах под давлением $588 \ldots 684$ Па ($6 \ldots 7$ атм) в течение 1... 2 мин, при этом поверхностный слой клубней проваривается. Затем картофель поступает в роликовую моечно-очистительную машину, в которой в резуль'тате интенсивного трения клубней о резиновые ролики и друг о друга проваренный слой снимается.

При комбинированном способе картофель сначала обрабатывают 10%-ным раствором каустической соды, нагретым до температуры $75 \ldots 80^{\circ} \mathrm{C}$, в течение 5 ... 6 мин, а затем паром высокого Аавления в течение $1 \ldots 2$ мин. После этого картофель поступает в мосчные машины барабанного типа.

На предприятиях общественного питания применяют два способа очистки корне- и клубнеплодов - тепловой и механический.

3.2. КАРТОФЕЛЕОЧИСТИТЕЛЬНЫЕ МАШИНЫ

На предприятиях общественното питания при механическом способе очистки применяют дисковые картофелеочистительные машины MOK-125, MOK-250, MOK-400 и KHH-600M (табл. 3.1). Эти машины предназначены для очистки каргофеля и корнеплодов.

Картофелеочистительная машина МОК-250 (рис. 3.1) имеет следующие основные узлы: корпус, рабочую камеру 9 с абразивными вставками 10 с эагрузочной крышкой 17 и разгрузочной дверцей 14, вращающийся рабочий конусный диск 5 с абразивным покрытием приводного механизма и пульт управления 7 .

Рабочая камера выполнена в виде литого цилиндрического корпуса, верхняя часть которого открыта и служит для загрузки овощей. Загрузочная воронка сверху закрывается крышкой 8 . На боковой поверхности рабочей камеры имеется люк с разгрузочным лотком 6 и дверцей для выгрузки овощей после очистки. В нижней части рабочей камеры имеется сливной патрубок 1 и сборник мезги 15.

Рабочим органом машины служит закрепленный на вертикальном валу конусный диск, покрытый абразивной массой, состоящей из зерен корунда или карбида кремния на бакелитовой основе. Дно конусного диска имеет радиальные волны для лучшего

Таблица 3.1. Технические характеристики картофелеочистительных машин

Параметр	Марка машины			
	MOK-125	MOK-250	MOK-400	KHH-600M
Производительность, кг/ч	125	250	400	600
Единовременная загрузка, кг	6	11	22	-
Напряжение, В	380/220			
Габаритные размеры, мм: длина высота шширина	$\begin{aligned} & 530 \\ & 380 \\ & 835 \end{aligned}$	$\begin{aligned} & 600 \\ & 430 \\ & 920 \end{aligned}$	$\begin{gathered} 600 \\ 495 \\ 1015 \end{gathered}$	$\begin{aligned} & 1500 \\ & 1150 \\ & 1280 \end{aligned}$
Macca, кг	85	105	140	660

перемещения овощей. На стенках рабочей камеры установлены с'вемные абразивные сегменты, которые при срабатывании можно заменить новыми.

Привод машины состоит из электродвигателя 13 и клиноременной передачи. Двигатель закреплен на подвижной плите, расположенной под мотором. Аля предотвращения попадания воды из рабочей камеры в электрический привод и электродвигатель установлена защитная манжета.

Пульт управления машины состоит из автоматического выключателя и нажимного пускателя.

В нижней части корпуса машины находится устройство для заземления.

Принции действия картофелеочистительной машины MOK-250. Овощи при загрузке через воронку получают вращательное движение, падая на вращающийся конусный диск с абразивным покрытием, и под действием центробежной силы прижимаются к стенкам машины. За счет трения об абразивные поверхности происходит снятие кожуры с овощей. Образующаяся мезга удаляется водой, негрерывно поступающей в рабочую камеру из водопровода, и через сливной патрубок уходит в кандлизацию.

Правила эксплуатации картофелеочистительной машины MOK-250. Перед началом работы производят внешний осмотр машины, наличия заземления, санитарного состояния и пос-

Рис. З.1. Картофелеочистительная машина МОК-250:
а - вид в разрезе; б - схема сборки; в - общий вид; 1 - сливной патрубок: 2 - основание; 3 - камера отходов; 4 - резиновый патрубок; 5 - конусный диск; 6 - разгруэочный лоток; 7 - пульт управления; 8 - откидная крышка; 9 - рабочая камера; 10 - абразивные вставки; 11 - дно камеры; 12 - эубчатый редуктор; 13 - электродвигатель; 14 - разгрузочная дверца; 15 сборник меэги; 16 - гнездо конуса; 17 - эагруэочная крышка; 18 - стойка; 19 - шип вала; 2О - облицовка

52

ле этого машину включают и проверяют ее работу на холостом ходу. Если машина исправна, приступают к работе на ней.

Немытые овощи загрязняют продукт и приводят к быстрому износу абразивных сегментов камеры. Поэтому перед закладкой овощей в картофелеочистительную машину их калибруют и моют. Такая предварительная обработка способствует лучшей очистке и удлиняет срок службы машины.

Загружать картофель и овощи в рабочую камеру следует только после пуска машины и при подаче в камеру воды. Масса загружаемого картофеля должна соответствовать массе, рекомендуемой инструкцией; оптимальная величина - $2 / 3$ объема рабочей камеры машины. При перегрузке машины ухудшается качество очистки, ускоряется износ электродвигателя и клиноременной передачи. Недогрузка машины приводит к нарушению внешнего слоя клубней, значительно увеличиваются отходы и расход электроэнергии,

Продолжительность очистки зависит от товарного сорта и качества картофеля, а также от состояния абразивного покрытия вращающегося конуса и стенок рабочей камеры машины. Очистка картофеля и корнеплодов дится $2 \ldots 4$ мин.

После окончания очистки, не выключая электродвилатель, открывают дверцу, и овощи выбрасываются в подставленную смкость. Затем загружают следующую порцию картофеля. После окончания работы машину промывают на холостом ходу, а корпус протирают чистой тканью. Клубни, посторонние предметы, попавшие между сегментами и терочным диском, следует извлекать только после полного останова машины специальным крючком.

Во время работы машины категорически запрещается опускать руки в рабочую камеру, так как это приводит к травме. К работе на машине допускаются лица, за которыми закреплена ланная машина, сдавшие экзамен но технике безопасности и безонасности труда.

Конструкции и принцип работы машин MOK-125, MOK-250, MOK-400 аналогичны и различаются только габаритами, объемом рабочей камеры и производительностью.

Картофелеочистительная маиина непрерывного gейспвия КНН-600M (рис, 3.2) предназначена для очистки картофеля за счет трения его об абразивные поверхности роликов, посаженных на рабочие валики, рабочих вдликов, стенок и перегородок при интенсивной подаче воды. Эта машина используется на заготовочных фабриках, крупных предириятиях общественного питания и в поточных линиях.

Картофелеочистительная машина $\mathrm{KHH}-600 \mathrm{M}$ состоит из рабочей камеры, установленной на раму, привода, очистительных валиков, электродвигателя 1, клиноременной передачи 3 и разбрызгивателя 8 .

Рабочая камера разделена перегородками 9 на четыре секции 6. В перегородках имеются окна с выдвижными заслонками. В верхней части каждого отделения смонтирован разбрызгиватель, к которому подводится вода. На торцевых стенках машины установлены загрузочный 5 и разгрузочный 11 лотки.

Рабочими органами машины служат очистительные валики, которые состоят из стальных стержней и насаженных на них абразивных роликов 4 , имеющих форму усеченного конуса и образующих волнистую поверхность.

Поверхность рабочей камеры и перегородки между отделениями покрыты абразивными пластинами. Движение от электродвигателя к валикам осуществляется через клиноременную и зубчатую передачи.

Продолжительность обработки картофеля в машине регулируется рукояткой червячного механизма 17, которая служит также Аля наклона кортуса машины. Скорость выхода очищенных ово-

Рис. 3.2. Схема картофелеочистительной машины непрерывного действия $\mathrm{HH}-600 \mathrm{M}$:
1 - электродвигатель; 2 - сварной каркас; 3 - клиноременная передача: 4 абразивный ролик; 5 - загрузочный лоток: 6 - секция рабочей камеры; 7 зубчатое колесо; 8 - разбрыэгиватель; 9 - перегородке; 10 - заспонка; 11 разгрузочный лоток; 12 - разгрузочная дверка; 13 - поддон; 14 - сетка: 15-крахмалоотстойник; 16 - спивной патрубок; 17 - черөячный механизм

54

Таблица 3.2. Возможные неисправности картофелеочистительных машин, их причины и способы устранения

Неисправность	Причина	Способ устранения
Очистка продукта происходит медленно, процент отходов прсвышает норму	Сильно загрязнены овощи. Недостаточное поступление воды в камеру. Перегрузка рабочей камеры овощами. Сработался абразив	Промыть овощи. Увеличить поступление воды в рабочую камеру. Уменьшить единовременную загрузку овощей. Заменить абразивы рабочего органа и стенок камеры
Рабочий орган вращается медленно	Проскальзывание ремня. Перегрузка машины овощами	Усилить натяжение ремня. Уменьшигь загрузку
Через закрытую дверцу рабочей камеры просачивается вода	Чрезмерное посгупиение воды в рабочую камеру. Засорение отверстий в дне рабочей камеры	Уменьшить подачу воды, прикрыв вентиль водопровода. Прочистить отверстие в дне рабочей камеры
После очистки проАукт получается битым	Частично выкрошгился абразив и образовались острые углы в рабочей камере	Заменить абразив рабочего органа и абразивные сегменты камеры

щей можно регулировать изменением ширины окон в перегородках и высоты подьема заслонки в разгрузочном окне.

Принцип действия картофелеочистительной машины КНН-600М. Картофель, непрерывно засыпаемый в заrрузочный бункер, попадает в первую секцию на быстровращающиеся абразивные валики. Вращаясь, клубни картофеля очищаются от кожуры абразивными роликами и моются струями воды. В процессе очистки картофель под действием вновь поступающих клубней продвигается вдоль валов к окну в перегородке, через которое попадает во вторую секцию, где совершает тот же путь, но в противоположную сгорону (по ширине машины). Пройдя все четыре секции, очищенные клубни через разгрузочный лоток выгружаются из машины.

Правила эксплуатации картофелеочистительной машины КНН-600М. Перед началом работы на картофелеочистительной машине проверяют исправность отдельных узлов и машины в целом, а также состояние электропроводки и заземления.

Загружают машину только после ее пуска и подачи воды в секции. При загрузке рабочей камеры следят за тем, чтобы в нее не попадали камни, куски земли и др. При возникновении чрезмерного шума, стука или каких-либо других неисправностей необходимо немедленно выключить машину и установить причину неисправностей.

Возможные неисправности картофелеочистительных машин, их причины и способы их устранения приведены в табл. 3.2.

3.3. ОВОЩЕРЕЗАТЕЛЬНЫЕ МАШИНЫ

Аля нарезания овощей на кусочки определенной формы на предприятиях общественного питания применяются овощерезательные машины (овощерезки). Промышленность выпускает овощерезки с механическим и ручным приводами. Машины для нарезания вареных овощей устанавливаются в холодных цехах, а для нарезания сырых овощей - в овощных и горячих цехах.

По принципу работы овощерезательные машины подразделяют на дисковые, роторные, пуансонные и с комбинированным срезом. Дисковые овощерезательные машины имеют комплект сменных ножей с лезвиями прямоугольной или криволинейной формы. Эти ножи являются рабочими органами; укрепляются на опорном диске, который получает вращательное движение от индивидуального или универсального привода.

Срез продукта в дисковых овощерезательньхх машинах происходит за счет прижатия продукта к вращающемуся диску. Толщина срезанного слоя продукта определяется расстоянием между плоскостями ножа и диска. Это расстояние может регулироваться по заданной величине. Форма частиц нарезанного продукта зависит от конструкции ножа, установленного на опорный диск. В роторных овощерезательных машинах продукт, загруженный в камеру, заклинивается между пластинами вращающегося ротора и неподвижной цилиндрической стенкой рабочей камеры. При этом продукт под действием центробежной силы прижимается к внутренней стенке рабочей камеры и скользит по ней. Овощи нарезаются ненодвижными ножами. Форма нарезанных овощей зависит от конструкции установленных ножей.

В пуансонных овощерезательных машинах измельчение продукта происходит путем продавливания их поршнем через неподвижную ножевую решетку. В комбинированных овощерезательных машинах нарезание производится вращающимися горизонтальными прямолинейными ножами и неподвижной ножевой решеткой с вертикальныгми прямолинейными ножами.

Принцип действия овощерезательных машин. Через загрузочный бункер сырые овощи поступают к вращающемуся ножевому диску, увлекаются им вниз, заклиниваются между стенкой бункера и диском (благодаря улиткообразной форме бункера) и нарезаются ножами диска. Отрезанные часгицы овощей проходят через щель между ножами и диском и собираются в подставленную емкость.

Правила эксплуатации овощерезательных машин. Включают электродвигатель и через загрузочный бункер засыпают промытые сырые овощи. Овощи должны поступать равномерно и в достаточном количестве, иначе качество нарезки ухудшается. Запрещается проталкивать овощи к вращающемуся ножевому диску руками, для этой цели следует пользоваться деревянным толкателем. При работе на овощерезательной машине работники должны быть одеты в сухую специальную форму одежды.

Категорически запрещается во время работы отвлекаться и покидать рабочее место до окончания работы с машиной.

После окончания работы овощерезательную машину выключают, разбирают, промывают и просушивают. Затем во избежание появления ржавчины рабочий вал и ножи смазывают пищевым несоленым жиром. При снятии диска с ножами с горизонтального вала необходимо использовать специальный крючок.

Техническое обслуживание овощерезательных машин проводится не реже 1 раза в 10 дней. Квалифицированный механик, обслуживающий данное премприятие, проводит смазывание, крепление, заточку или замену ножей и друтие профилактические или ремонтные работы.

Овощерезательная машина МРО-200 (рис. 3.3) настольного типа используется для нарезания сырых овощей кружочками, ломтиками, соломкой, брусочками, а также на ней можно шинковать капусту.

Технические характеристики овощерезательной машины MPO-200

Производительность, кг/ч ... Ао 200
Толщина нарезаемых ломтиков, мм ... $2 \ldots 3$
Мощность электродвигателя, кВт ... 0,4
Напряжение, В 220/380
Габаритные размеры, мм;
мина 530
шириша 335
высота 460
Macca, kr 35

Овощерезательная машина МРО-200 состоит из корпуса 4, электропривода, загрузочной камеры 7 и сменных рабочих инструментов 8. Внутри корпуса машины находится привод, состоящий из электродвигателя 10 и клиноременной передачи. Рабочая камера выполнена в виде цилиндра, над ней крепится съемная загрузочная емкость, имеющая окна для загрузки овощей. В комплект машины входят дисковый нож, два терочных диска и два комбинированных ножа.

Дисковый нож используется для нарезания овощей ломтиками и шинкования капусты. Комбинированные ножи применяются для нарезания овощей брусочками с поперечным сечением 3×3 и

Рис. З.3. Универсальная овощерезательная машина МРО-200: a - схема машины; б - виды сменного рабочего инструмента: 1, 11 - шкив; 2-приводной вал; 3 - стакан: 4 - корпус; 5 - прижимной болт: 6 ципиндрические топкатели; 7 - корпус загрузочной камеры; 8 - сменные рабочие инструменты; 9 - сбрасыватель; 10 - электродвигатель

58

Таблица 3.3. Возможные неисправности овощерезательной машины MPO-200, их причины и способы устранения

Неисправность	Причина	Способ устранения
Машина не режет, а мнет продукт	Тупые ножи	Заточить ножи
Нарезание продукта брусочками осуществ- ляется медленно	Тупые кромки ножей-гребенок	Заточить ножи-гре- бенки
Нарезание продуктов соломкой осуществля- ется медленно	Тупые кромки диска	Заточить кромки диска

10×10 мм. Эти ножи закреплены на диске неподвижно и поэтому толщина среза не регулируется, Диски с ножами укрепляются на валу с помощью винта. На коргусе установлен болт, к которому крепится заземляющий провод. На передней стенке установлены кнопки «Пуск» и «Стоп» для включения и выключения машины.

Принцип действия овощерезательной машины МРО-200. Основан на погружении продукта в загрузочное отверстие и прижатии толкателем к вращающему рабочему органу. Нож врезается в продукт и нарезает его. Нарезанный продукт' сбрасывателем удаляется из рабочей камеры и далее через разгрузочный лоток попадает в тару.

Правила эксплуатации овощерезательной мапи и ны МРО-200. Перед включением машины в работу повар, закрепленный за данным оборудованием, обязан выполнить правила техники безопасности и правила безопасности труда. Во время работы машины категорически запрещается опускать руки в рабочую камеру. Санитарную обработку проводят после отключения и останова машины.

Возможные неисправности овощерезательной машины МРО200 и способы их устранения приведены в табл. 3.3.

3.4. ПРОТИРОРЕЗАТЕЛЬНЫЕ МАШИНЫ

Промирорезательная маиина МП-800 (рис. 3.4) предназначена для протирания вареных овощей, а также творога, печени, рњбы и мяса.

Рабочей камерой машины служит бункер с конической загрузочной воронкой. На дне рабочей камеры устанавливаются неподвижные сменные сита или терочный диск. На вертикальном валу устанавливаются сменные роторы (лопастные 3 и роликовые), которые протирают продукты, подаваемые в машину. Аля удаления непротертых продуктов в стенке рабочей камеры находится люк для отходов 5 , который имест плотно закрываемую крышку и ручку. Удаление непротертых продуктов осуществляется ротором, который с помощью реверсивного управления двигателем вращается в обратном направлении. В зависимости от вида протираемого продукта используются различные сочетания ротора и сит.

На корпусе машины имеются кнопки «Пуск», "Стоп», "Отходы», а также блокирующий микровыключатель, который не включает двигатель при снятой загрузочной рабочей камеры.

Принцип работы протирорезательной машины МП-800. Вареный продукт; предназначенный для протирания, загружают в бункер рабочей камеры машины. Вращающийся ротор своими лопастями захватывает и подает к ситу продукт, который измельчается и продавливается через отверстия в сите. Готовая продукция сбрасывателем подается по лотку в подставленную емкость.

Правила эксплуатации протирорезательной машины МП-800. Перед началом работы на протирорезательной машине проверяют санитарное состояние, правильность сборки и надежность крепления сита, терочных дисков, сменного ротора и всех деталей машины. После этого проверяют надежность и исправность установленного заземления. Затем машину проверяют на холостом ходу. K работе на данной машине допускаются лица, за которыми закреплена данная машина, имеющие специальную форму одежды и сухую обувь.

Категорически запрещается во время работы поправлять и проталкивать продукты руками. Если возникла такая необходимость, то это можно делать только специдльным толкателем. В случае появления неполадок в работе машины ее немедленно останавливают и осматриваютт. Замену дисков и ножей нужно производить после останова двигателя машины и откюючения ее от сети напряжения. Заточку ножей и текущий ремонт выполняют работники, обслуживающие данное предприятие согласно заключенному договору.

После окончания работы машину отключают, разбирают, хорошо промывают все рабочие части, протирают и просушивают.

Рис. 3.4. Протирореэательная машина МП-800:
1 - поток для выгруэки продуктов; 2 - решетка; 3 - лопастной ротор; 4 загрузочный бункер; 5 - люк для отходов; 6 - ручка с эксцентриковым зажимом; 7 - емкость для сбора отходов; 8 - электродвигатель; 9 - клиноременная передача

При длительном хранении все работие части смазываю" несоленым жиром.

Маиина gля приготовления карпофельного пюре МКП-60 (рис. 3.5) используется в столовых, в горячих цехах для приготовления картофельного пюре. Эта машина состоит из котла пище-

варочного электрического котла КПЭ-60 1 и электропривода 7_{1} смонтированного на трехколесной тележке 13. На тележке два колеса находятся на неподвижных осях, а третье колесо, служащее для поворота, - на подвижной оси. Тележка имеет педаль 12, с помощью которой фиксируют тележку при установке у котла. Электропривод, расположенный на тележке, состоит из телескопической колонки 11 с механизмом подьема, привода, взбивателя и муфты 5 для присоединения лопасти. Маховик 10 служит для поднятия привода и головки взбивателя 6. Сверху котел закрывается специальной крышкой 4 , закрепленной двумя зажимами 3.

Правила эксплуатации машины МКП-60. К котлу со сваренным картофелем подкатывают тележку и закрепляют ее с помощью педали; снимают с котла крышку. Вращением маховика поднимают привод с головкой взбивателя, присоединяют лопасть 2 к рабочему валу с помощью муфты и опускают ее в котел,

Рис. З.5. Машина МКП-60:
1 - котел КПЭ-6О; 2 - лопасть; З - зажимы; 4 - крышка; 5 - соединительная муфта; 6 - головка взбиватепя; 7 - электропривод; 8 - кнопочная станция; 9 - рукоятка; 10 - маховик; 11 - тепескопическая копонка: 12 - педапь: 13 - тепежка; 14 - сцепное устройство

62

оставляя зазор между лопастью и дном котла не менее 5 мм. Затем закрывают котел крышкой с зажимами и включают машину. По окончании работы машину выклютают, снимают крышку и, подняв лопасть в верхнее положение, отсоединяют его. Нажав на педаль, откатывают тележку. После разгрузки проводяя санитарную обработку котла и сменного механизма привода.

Эксплуатацию машины нужно производить в строгом соответствии с инструкцией завода-изготовителя, которая предусмотрена для каждой машины. Запрещается снимать лопасть до полного останова машины. При подъеме крышки необходимо соблюдать осторожность, так как можно получить ожог паром рук и лица.

3.5. ПОТОЧНЫЕ ЛИНИИ ПО ПЕРЕРАБОТКЕ ОВОЩЕЙ

Поточная линия включает в себя машины, механизмы, аппараты, подъемные транспортные устройства, электрические приборы, соединенные конвейером и выполняющие единый технологический процесс.

Поточные линии значительно облегчают труд работников, повышают производительность труда, механизируют производственнье процессы, улучшают культуру производства и снижают себестоимость вынущенной продукции. Устанавливаются поточные линии на крупных предприятиях и базах по переработке продуктов питания. Работу поточных линий рассмотрим на примере поточной линии очистки и сульфатации картофеля ПЛСК-63.

Поточная линия ПЛСК-63 (рис. 3.6) предназначена для комплексной механизации процессов очистки и сульфатации картофеля. Эта поточная линия состоит из следующих машин и механизмов: загрузочного бункера 1 с транспортером, вибрационной моечной машины 2 , камнеловушки 3 , картофелеочистительной машины непрерывного действия 4 , наклонного трансюортера, конвейера доочистки 5, сульфатационной машины 6, весового дозатора 7 и пульта управления.

Принцип действия поточной линии ПЛКС-63. Обработка картофеля производится в следующем порядке: картофель, ноступивший с поля, загружается в бункер, трансиортер бункера нодает клубни в приемную часть транспортера, который доставляег их в вибрационную моечную машину. Вымытый картофель постуиает в камнеловушку для отделения от картофеля камней и дру-

Рис. З.6. Поточная линия ПЛСК-бЗ:
1 - загруэочный бункер; 2 - вибрационная моечная машина; 3 - камнеловушка; 4 - картофелеочистительная машина непрерывного действия; 5 конвейер доочистки; 6 - сульфатационная машина; 7 - весовой дозатор

гих предметов, которые могут повредить абразивную поверхность картофелеочистительной машины. Пройдя через картофелеочистительную машину непрерывного действия, очищенный картофель поступает на доочистку, а затем по наклонному транспортеру попадает в машину для сульфатации, где в течение $4 . .5$ мин обрабатывается 1%-ным раствором бисульфита натрия. После сульфатации картофель поступает в дозатор и ополаскивается из спеџиального устройства для снижения содержания бисульфита натрия. Готовую продукцию расфасовывают и отвозят в хранилища или на предприятия общественного питания.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. На чем основан принцип действия очистки картофеля в картофелеочистительных машинах?
2. Как сульфатируют картофель?
3. Перечислите требования правил эксплуатации картофелеочистительной машины МОК-250.
4. Начертите схему картофелеочистительной машины МОК-125.
5. Как регулируется продолжительность обработки картофеля на машине KHH-600М?
6. Для чего производится калибровка овощей перед их очисткой в машинах?
7. Кто имеет право работать на овощерезательных машинах?
8. Какие факторы влияют на производительность машин по обработке овощей?
9. Как в овощерезательных машинах регулируется толщина нарезания овощей?

Глaba 4

ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ МЯСА И РЫБЫ

4.1. КЛАССИФИКАЦИЯ ОБОРУДОВАНИЯ ДЛЯ ОБРАБОТКИ МЯСА И РЫБЫ

На предприятиях общественного питания для обработки мяса и рыбы используют следующее оборудование: мясорубки, фаршемешалки, мясорыхлители, рыбоочистители, котлетоформовочные машины и универсальные приводы для мясных цехов с комплектом сменных исполнительных механизмов к ним.

В настоящее время широко применяют мясорубки: с ручным приводом - МИМ-60, с индивидуальным электродвигателем -МИМ-82 и МИМ-105; сменные мясорубки к универсальным приводам ПУ-0,6 и ПГ-0,6 - МСГ-150 и МСГ-70 (150 и 70 - производительность мясорубок, кг/ч).

Все мясорубки обозначаются буквами МИМ, что означает «машина измельчитель мяса», и цифрами, соответствующими диаметру ножевой решетки (мм).

Фаршемешалки предназначены мя перемешивания фарша и его компонентов в однородную массу и обогащения ее кислородом воздуха, что обеспечивает получение фарша и котлетной массы высокого качества. На предприятиях общественного питания используют фаршемешалки с иңдивидуальным приводом, а также фаршемешалку МС8-150 как сменный механизм к универсальному приводу.

Машины для рыхления мяса служат для надрезания поверхности порционных кусочков мяса для разрушения в них волокон соединительной ткани. Такие кусочки мяса при тепловой обработке меньше деформируются, быстрее прожариваются и получаются более сочными и мягкими. На предприятиях общественного питания применяются рыхлители мяса МРМ-15 с индивидуальным приводом, а также МС-19 как сменный механизм к универсальному приводу ПУ-0,6.

В настоящее время для формовки котлет используют машину марки MФК-2240, которая не только формует котлеты, но и производит панировку с одной стороны.

Аля удалсния чешуи с рыбы на предприятиях обществснного питания применяют рыбоочиститель $\mathrm{PO}-1$ с индивидуальным щриводом ИМС-17-40 как сменный механизм к универсальному пориводу ПМ-1,1.

Аля приготовления мясных и рыбных котлет в мясных цехах используют универсальные приводы специального назначения с комплектом сменных механизмов первого и второго исполнений.

4.2. МЯСОРУБКИ

Мясорубки предназначены для измельчения мяса и рыбы. На предприятиях общественного питания широкое использование получили мясорубки МИМ-82 и МИМ-105.

Мясорубка МИМ-82 (рис. 4.1) яяляется настольной машиной с индивидуальным креплением. Она состоит из корпуса, камеры обработки, загрузочного устройства, шнека 9, рабочих органов, а также приводного механизма и кнопочного управления машины.

Чугунный корпус мясорубки облицован стальными листами из нержавеющей стали, в которых расположены отверстия для oxлаждения электродвигателя.

Рабочая камера машины на внутренней поверхности имеет винтовые нарезы, которые улучшают подачу мяса и исключают вращение его вместе со шнеком. На верхней части корпуса находится загрузочное устройство, над которым установлено предохранительное кольцо 10 , исключающее возможность попадания рук в рабочие органы машины в процессе работы. Мясорубка комплектуется тремя решетками с отверстиями диаметром 3, 5 и 9 мм, подрезной решеткой $8(25)$ и двумя двухсторонними ножами 22 и 24.

Ножи и решетки падеваются на шнек в последовательности, указанной на рис. 4.1, б, и в собранном виде плотно прижаты друг к другу с помощью зажимной гайки 6 .

Внутри рабочей камеры находится шнек 9, который представляет собой однозаходный червяк с переменным шагом витков и служит для захватывания мяса и подачи его к ножам и решеткам. Шінек с одной стороны имеет хвостовик с шипом, через который он получает вращение от привода, с другой стороны он имеет на-

66

Рис. 4.1. Мясорубка МИМ-82:
" - схема; б - рабочие инструменты: 1 - основание; 2 - электродвигатель; 3. 7, 21, 23 - ножевые решетки; 4, 20 - упорное копьцо; 5, 22, 24 - двухсторонние ножи; 6 - зажимная гайка; 8, 25 - подрезная решетка; 9. 26 шнек; 10 - предохранительное кольцо; 11 - толкатель; 12 - загрузочная чаша; 13. 18 - зубчатые колеса; 14 - вал; 15 - шарикоподшипник; 16 манжета: 17, 19 - шестерни

лең с двумя фасками, на который устанавливаются ножи и решетки. Решетки в рабочей камере неподвижыы, а ножи вращаются вместе со шнеком.

Сначала устанавливается подрезная решетка, которая имеет чри ножа режущими кромками наружу, затем двухсторонний ॥ож режущими кромками против часовой стрелки и крупная репегка любой стороной. Далее устанавливают второй двухсторонний нож, мелкую решетку, упорное кольцо и зажимную гайку. Привод мясорубки состоит из электродвигателя 2 и двухсту॥юнчтого цилиндрического косозубого редуктора. На боковой облицовке мясорубки расположен кнопочный пульт с двумя кнонками управления: «Пуск» и "Стоп».

Технические характеристики мясорубки МИМ-82

Производительность, кг/ч 250
Частота вращения шнека, об/мин 250
Мощность электродвигателя, кВт 1,1
Напряжение, В 220/380
Габаритные размеры, мм:
длина 510
ширина 340
высота 480
Масса, кг 56
Правила эксплуатации мясорубки МИМ-82. Передвключением машины необходимо убедиться, что корпус мясоруб-ки надежно закреплен, а зажимная гайка не затянута. После про-верки зануления (заземления) и включения электродвигателя сле-дует завернуть гайку до появления незначительного усиленияшума. Мясо или рыба, предварительно нарезанные кусочкамимассой $50 \ldots 200$ г и освобожденные от костей, сухожилий и пле-пок, проталкивают деревянным толкателем в загрузочную горло-вину. При этом запрещается сильно прижимать продукт к шнеку,так как это может вызвать перегрузку и вывод из строя электро-двигателя. Подача мяса должна быть равномерной, без большихусилий. При длительной работе мясорубку надо периодически ос-танавливать, а ножи и решетки очищать от сухожилий.

Запрещается использовать мясорубку без загрузки, так как это ускоряет износ и ножей и решеток. Не рекомендуется измельчать в мясорубке сухари, сахар или соль, потому что эти продукты приводят к быстрому изнашиванию и затуплению рабочих органов.

Нельзя работать с мясорубкой без предохранительного кольца и оставлять ее во время работы без присмотра.

После окончания работы машину выключают и разбирают. Аля извлечения шнека, ножей и решеток из рабочей камеры мясорубки используют специальный крючок. Все детали очищают от остатков фарша, промывают горячей водой и просушивают.

После просушивания шнек, ножи, решетки и рабочую камеру смазывают несоленым пищевым жиром.

При сборке особое внимание уделяется правильной установке рабочих органов, ножей и решеток, так как в случае неправильной сборки может произойти выход машины из строя.

Надо помнить, что если затянута зажимная гайка, то ножи слишком сильно прижимаются к решетке и в процессе работы в результате трения металла нагреваются и выходят из строя.

Рис. 4.こ. Мясорубка МИМ-105:
1 - электродвигатель; 2 - рабочая камера; З - неподвижная гайка; 4 упорное кольцо; 5 - зажимная гайка; 6 - шнек; 7 - загрузочное устройство; 8 - упорный шарикоподшипник; 9 - втупка вала, 10 - вал; 11 - шарикоподєипник; 12 - корпус; 13 - клиноременная передача

Слабо завинчивать зажимную гайку также нежелательно, так как в этом случае между ножом и решеткой образуется зазор и рубкс мяса происходит некачественно; резко понижаются каче-

сгво и производительность мясорубки. Одно из основньх условий хорошей работы мясорубки - правильно заточенные и установленные ножи и решетки в рабочей камере машины. Поэтому ножи и решетки по мере необходимости должны затягиваться или заменяться новыми.

Мясорубка МИМ-82M по устройству и эксплуатации аналогична мясорубке МИМ-82, но имеет съемную загрузочную чашу и гильзу, что удобно для быстрой разборки и санитарной обработки машины. Фиксация ножей и решеток осуцествляется рычажным устройством.

Мясорубка МИМ-105 (рис. 4.2) по конструкции аналогична мясорубке МИМ-82, но имеет некоторые отличия. Она устанавливается на полу и имеет значительно большую производительность. Редуктор соединяется с электродвигателем клиноременной передачей. Рабочие органы (ножи и решетки) мясорубки МИМ-105 аналогичны рабочим органам мясорубки МИМ-82, только диаметр ее рабочей камеры на 23 мм больше, а шнек, ножи и решетки выталкиваются из корпуса вилкой, приводимой в движение рукояткой.

Правила эксплуатации мясорубок МИМ, МИМ-82М и МИМ-105 идентичны.

Неисправность	Причина	Способ устранения
Мясорубка не режст, а мнет мясо	Неправильная регулировка нажима гайки	Выключить электродвигателц, вынгтть решетки, ножи и шнек, очистить их от жил и иленок, установить на место и отрегулировать зажимную гайку
Повышенный шум в редукторе или остановка двигателя	Нож и решетка чрсзмерно зажаты гайкой	Ослабить нажим гайки
Продукт переработки нагревается, а пленки и жилы наматываются на ножи	Затупились ножи и решетки. Неплотное прилегание ножей и решеток	Заточить и притереть ножи и решетки

Технические характеристики мясорубки МИМ-105

11роизводительность, кт/ч 400
' वсстота вращения шнека, об/мин 200
Мощность электродвигателя, кВт 2,2
I वаиряжение, В 220/380
「сбаритные размеры, мм:
Алина 580
ширина 580
высота 900
Macca, KI 150

Мясорубка МС2-70 приводится в рабочее состояние универ‘фльными приводами ПГ-0,6 и ПУ-0,6, а мясорубка МС2-150 упиверсальным приводом ПМ-1,1. По конструкции, устройству и их эксплуатации эти мясорубки аналогичны мясорубке МИМ-82.

Возможные неисправности мясорубок и способы их устранеиия ириведены в табл. 4.1.

4.3. ФАРШЕМЕШАЛКИ

Аля перемсшивания и приготовления котлетной массы на предприятиях общественного питания используются фаршемеІллки как с ишдивидуальным приводом, так и съемные, которые входят в комплект сменных механизмов к приводу для мясного цеха.

Фаршемешалка МС-150 (рис. 4.3) состоит из аломинисвого ழилиндрического корпуса 5 , отлитого вместе с загрузочным бунксром 7. Внутрь рабочей камеры вставляется рабочий вал 4, на котором находятся лопасти 6 , установленныс под углом 30°, что обеспечивает перемещепие продукта и хорошую производительпость машины.

Сверху загрузочного бункера находится предохранительная рюшетка 8, которая шредохраняет руки от попадания в бункер. С персдней стороны корпус закрывается крышкой 3, которая закривастся с помощью откидного болта 2, что создает хорошие условия для санитарной обработки машины. Для выхода готовой иродукции в крышке есть отверстие с заслонкой 1 .

Принцип действия фаршемешалки МС-150. При "рмении рабочего вала лопасти равномерно перемешивают |үим и предусмотренные рецептурой компоненты ло необходимой консистенции, насыщая их воздухом, и перемещают к раз-

Рис. 4.3. Фаршемешалка МС-150:
1 - заслонка; 2 - откидной болт; 3 - крышка; 4 - рабочий вал; 5 - корпус;
6 - лопасть; 7 - загрузочный бункер; 8 - решетка; 9 - хвостовик

1'рузочному отверстию. По окончании процесса ($40 \ldots 60$ с) заслоптка открывается и готовый продукт самотеком выгружается в подставленную емкость.

Правила эксплуатации фаршемешалки МС-150. Перед началом работы необходимо выполнить требования техники безопасности и в процессе использования соблюдать безопасность труда. Фаршемешалку устанавливают в горловине универсального привода и надежно закрепляют винтами, Затем в корнус устанавливают рабочий вал, закрывают крышку и закрепляют ее откидным болтом. Аалее ставят предохранительную решетку и включают универсальный привод для проверки работы на холосTOM XOAY.

Если машина исправна, то в рабочую камеру загружают продук'ы и компоненты при включенном двигателе. Общее количество продуктов должно быть не более 7 kr .

Затрещается включать машину и работать на ней без предохранительной решетки в загрузочном бункере, а также проталкивать фарш в рабочую камеру руками и выгружать вручную.

После окончания работы универсальный привод выключают, снимают фаршемешалку, разбирают ее, промывают горячей водой и сушат. Потом смазывают несоленым пищевым жиром.
72

4.4. МАШИНЫ ДЛЯ РЫХЛЕНИЯ МЯСА

Мясорыхлительная машина МРМ-15 (рис. 4.4) предназначенд для рыхления поверхности порционных кусков мяса (ромштексов, шницелей и др.) перед их жареньем. Мясо после такой обработки становится более мягким, лучше прожаривается и не де(рормируется при жареньи.

Технические характеристики мясорыхлительной машины MPM-15

Производительность при двукратном пропускании, порций/мин 15
Количество ножевых валов 2
Мощность электродвигателя, кВт 0,27
Напряжение, В 220
Габаритные размеры, мм:
длина 560
ширина 260
высота 390
Macca, кг 35

Рис. 4.4. Мясорыхлительная машина MPM-15:
" - разрез; б - общий вид; 1 - основание; 2 - фрезы: 3 - гребенка; 4 кнопка для открывания крышки; 5 - редуктор; 6 - клиноременная передача; 7- червячный редуктор: 8 - электродвигатель; 9 - корпус; 10 - крышка загруэочной воронки; 11 - шнур с вилкой; 12 - кнопки управления

Мясорыхлительная машина MPM-15 состоит из основания 1 и корпуса 9 , закрываемого крышкой 10 , в котором размещены электродвигатель 8 , червячный релуктор 7 и каретка.

Рабочими органами мясорыхлителя служат дисковые ножи фрезы 2, расположеннне на валиках и вращающиеся при работе один навсгречу другому. Эти рабочие органы находятся в рабочей камере.

Рабочей камерой служит коробка, наверху которой расположена загрузочная воронка. В нижней части установлена каретка, состоящая из двух половин, соединенных петлями и защелками. В каретке также установлены две гребенки 3 между фрезами, которые предохраняют от наматывания мяса на фрезы. Приводной механизм машины состоит из электродвигателя, клиноременной персдачи 6 , редуктора и шшестерен.

Принцип работы мясорыхлительной машины MPM-15. После включения машины куски мяса, нарезанные на порции, опускаются в загрузочную воронку и захватываются вращающимися навстречу друг другу вдликами с фрезами. Проходя между фрезами, кусок мяса надрезается с двух сторон их зубьями, при этом происходит разрушение волокон и увеличение поверхности продукта.

Механизм МС19-1400 приводится в действие универсальным приводом ПМ-1,1 или ПУ-0,6. По конструкции и эксплуатации он аналогичен машине MPM-15.

Правила эксплуатации мясорыхлительной машины МРМ-15. Перед началом работы с мясорыхлителя снимают крышку и проверяют иравильность установки каретки с ее рабочими органами. Закрывают крышку и проверяют машину на холостом ходу.

Если машина исправна, подставляют под разгрузочное окно емкость и приступают к работе.

Подготовлснные куски мяса опускают в загрузочную воронку. Эти куски мяса можно повторно пропускать для разрыхления их в поперечном направлении.

В процессе эксшлуатации машины MPM-15 запрещается работать со снятой крышкой, поправлять куски мяса руками или оставлять включенную машину без присмотра.

Нужно постоянно следить за состоянием фрез и периодически затачивать их.

После окончания работы машину выключают, разбирают, промывают рабочие органы горячей водой, просушивают и смазывают пищевым несоленым жиром.

4.5. КОТЛЕТОФОРМОВОЧНАЯ МАШИНА

В настоящее время на предприятиях обнественного нитания мя изготовления котлет с успехом применяют котлетоформовочные машины. Рассмотрим работу котлетоформовочной машины MФК-2240.

Котлетоформовочная машина МФК-2240 (рис. 4.5) предназначена для формовки котлст и биточков. Она состоит из корпуса 1 , формующего дискового стола 5 с формующими цилиндрами, бункеров для котлетной массы 2 и панировочных сухарей 3, приводного механизма, сбрасывателя и механизма регулирования.

Рабочей камерой машины служит вращающийся дисковый формующий стол с ячейками круглой или овальной формы, в которых установлены поршни. При вращении стола головки толкателей скользят по кольцевому копиру и заставляют поршни совершать возвратно-поступательное движение в вертикальном направлении. Над столом расположен бункер для фарша, внугри которого установлен лопастной винт, направляюций котлетную массу через отверстия в бункере к ячейкам формующего стола.

Бункер мяя панировочных сухарей установлен над столом персд бункером для фарша и имеет коническую съемиую воронку.

Приводной механизм котлетоформовочной машины состоит из электродвигателя, червячного рсдуктора и зубчатой цилиндрической передачи. Над формующим столом размещен сбрасыватель, а рядом с ним - разгрузочный лоток. На манине установлен специальный регулировочный вин'г, который регулирует массу котлет при помощи изменения глубины опускания поршня.

Рис. 4.5. Котлетоформовочная машина МФК-2240:
1 - корпус; 2 - бункер для котлетной массы; 3 - бункер для панировочных гухарей; 4 - приемный лоток: 5 дисковый стол с формующими цилиндрами

Принцип действия котлетоформовочной машины МКФ-2240. После включения машины ячейка формующего с'ола проходит под бункер сухарей, при этом поршень опускае'гся на 1,5 мм и панировочные сухари заполняют свободный объем. При дальнейшем движении стола ячейки подходят под бункер для фарша, поршень опускается на глубину, равную толщине котлеты, и фарш заполняет ячейку. Далее при повороте формующего стола поршень поднимается и выталкивает котлету на поверхность стола, а сбрасыватель сталкивает ее на разгрузочный лоток.

Правила эксплуатации котлетоформовочной машины МКФ-2240. Машину собирают, на корлус устанавливают формующий стол с поршнями и регулировочным винтом и бункера для фарша и панировочных сухарей. В бункере для фарша устанавливают двухлопастной вал, на формующем столе сбрасыватель готовой продукции. После этого включают машину и проверяют ее на холостом ходу. Если машина работает правильно, закладывают фарш и сухари в соответствующие бункера, с помощью регулировочного винта устанавливают массу котлет и включают машину. Первые котлеты взвешивают и, используя регулировочный винт, устанавливают их требуемую массу. В процессе работы машины своевременно добавляют в бункер фарш и панировочные сухари. Готовые котлеты снимают с разгрузочного лотка и укладывают на посыпанный сухарями противень непанированной стороной вниз. Во время работы машины запрещается рукой продавливать в бункер фарш и панировочные сухари.

После работы машину частично разбирают. Детали ее промывают горячей водой и просушивают, корпус машины протирают сначала влажной, а потом сухой тканью.

Технические характеристики котлетоформовочной машины МФК-2240

Производительность, шт./ч 2240
Масса котлет, г 45... 95
Вместимость бункера для сухарей, кг 0,7
Мощность, кВт 0,4
Напряжение, В 220/380
Габаритные размеры, мм:
длина 610
ширина 392
высота 630
Macca, кг 73

4.6. РЫБООЧИСТИТЕЛЬНЫЕ МАЈИИНЫ

На предприятиях общественного питания для очистки рыбы от чешуи используют рыбоочистительные машины. Работу этих машин рассмотрим на примере РО-1М.

Технические характеристики рыбоочистителя PO-1M
Производительность, кг/ч ... $50 . . .60$
Мощность, кВт .. 0,5
Напряжение, В ... 220
Габаритные размеры, мм:
длина .. 1750
ширина ... 185
высота ... 300
Macca, кг.. 7
Рыбоочистительная машина РО-1М (рис. 4.6) состоит из корпуса, в котором расположен электродвигатель 5 , гибкого вала 6 и рукоятки держателя скребка 1 со скребком 7. Рукоятка держателя скребка выполнена из электроизоляционного материала - пластмассы. Внутри рукоятки расположен валик, на конце которого устанавливается скребок, приводимый во вращение с помощью гибкого вала и электродвигателя. Наиравление вращения скребка - левое.

Скребок представляет собой металлическую фрезу со спиральными зубьями, заканчивающимися конусной шероховатой поверхностью с мелкой насечкой для очистки труднодоступных мест рыбы. Сверху скребка имеется предохранительный кожух, который защищает руки работника от травмы и исключает разбрасывание чешуи.

Рис. 4.6. Рыбоочистительная машина РО-1М:
1 - рукоятка держателя скребка; 2 - рукоятка с включателем; З - вилка: 4 кронштейн; 5 - электродвигатель; 6 - гибкий вал; 7 - скребок

Гибкий вал состоит из резинового шланга, внутри которого находится стдльной тросс, а в местах соединения его с электродвигателем и рукояткой имеются пружины, исключающие резкий перегиб вала.

Электродвигатель однофазного тока крепится к крышке стола с помощью кронштейна и может поворачиваться в любую сторону.

Правила эксплуатации рыбоочистительной машины РО-1M. Работа с рыбоочистительными машинами сводится к следующему: на производственном столе для обработки рыбы устанавливают корпус машины; с помощью кронштейна закрепляют скребок на гибком валу, вынолняют правила техники безопасности и безопасности труда при работе с рыбоочистителем и только после проверки на холостом ходу приступают к очистке рыбы.

Рыбу укладывают на разделочную доску и прилерживают ее левой рукой за хвостовую часть, а праной проводят скребком от хвоста до головы.

После работы скребок промывают, опуская его в горямую воду при включенном электродвигателе. Затем электродвигатель выключают, а скребок разбирают, вытирают и смазывают растительным маслом.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какой привод у мясорубки МИМ-6О?
2. Как правильно собрать мясорубку?
3. Для чего спужит шнек мясорубки и почему он изготовпен с переменным шагом витков?
4. Какие правипа техники безопасности и безопасности труда необходимо соблюдать при работе на мясорубке с индивидуальным приводом?
5. В чем заключается причина неисправности мясорубки, когда она не режет, а мнет мясо?
6. Какие правила эксппуатации необходимо соблюдать при работе на фаршемешалке MC-150?
7. Какие функции выпопняют фрезы мясорыхлительной машины?
8. Как провести регулировку массы котпет и биточков в котпетоформовочной машине?
9. Какие приспособления обеспечивают безопасную работу на рыбоочистительной машине PO-1M?
10. Для чего корпус мясорубки имеет пазы?
11. Расшифруйте маркировку машин: МИМ-105, МС8-150, МРМ15, МФК-2240.

Глава 5

ОБОРУДОВАНИЕ ДЛЯ ПОДГОТОВКИ КОНДИТЕРСКОГО СЫРЬЯ

5.1. ПРИНЦИП РАБОТЫ ИЗМЕЛЬЧИТЕЛЬНЫХ МЕХАНИЗМОВ

Процесс измельчения пищевых продуктов, т.е. размельчение их на части, широко применяется на предприятиях общественного нитания при изготовлении панировочных сухарей, сахарной пудры, Аробленых орехов, кофе, отжатии сока из овощей и фруктов.

Измельчение - механический процесс, при котором воздействие рабочих органов на обрабатываемый продукт сопровожда(rся переходом последнего за прелелы упругих деформаций.

По хараклеру применяемых усилий измельчение производят следующими способами:

разрыванием - разрушением при растяжении;
раздавливанием - разрушением при сжатии;
размалыванием - разрушением при изгибе;
сдвиганием одного слоя продукта относительно другого - разрушением при сдвиге;

созданием на малых участках поверхности продук'г больших контактных напряжений - разрушением лезвием.

Разнообразие пищевых продуктов требует и разных способ̄ов их измельчения. В зависимости от физико-химических свойств пролуктов, особенностей технологического процесса, требований к дисперсности, качеству поверхности раздсла, форме конечного продукта этот процесс осуцествляют па различных измельчамюцих машинах.

На предприятиях общественного питания применяются размолочные машины и механизмы, различающиеся по ус'ройству рабочих органов: с конусными рабочими органами (МС12-15 и МИП-11-1), дисковые (МИК-60 и MKK-120) и вальцовые (МС12-40 и МАП-11-1).

Основные требования, которым должна удовлетворять любая измельчительная машина, сводятся к следующему:

- возможности быстрого и легкого изменения степени измельчения;
- определенной износостойкости рабочих органов, не допуская попадания кусочков металла в обрабатываемый продукт;
- своевременному удалению измельченного продукта из рабочей камеры во избежание излишнего измельчения, сопряженного с перерасходом электроэнергии;
- наличию предохранительных конструктивных элементов, которые исключали бы производственный травматизм.
В настоящее время имеется ряд гипотез, объясняющих теорию дробления твердых тел. Процесс этот отличается чрезвычайной сложностью и зависит от факторов, трудно поддающихся математическому учету.

5.2. ИЗМЕЛЬЧИТЕЛЬНЫЕ МЕХАНИЗМЫ

Механизм МДП-11-1 (рис. 5.1) предназначен для дробления орехов и растирания пищевого мака. Он выполнен в виде прямоугольного корпуса, в верхней части которого расположен загрузочный бункер 3. В бункере установлены питательный валик 5 и шибер 4 , с помощью которых изменяется ширина щели, регулирующей подачу продукта к размолочным валикам.

В передней части корпуса установлены два размолочных валика 7, 8: один стационарный с гладкой поверхностью, другой сменный с рифленой или гладкой поверхностью. Сменные валики машины быстросъемные, и замена их производится с помощью вытяжной шпонки. Зазор между валиками регулируется от 0 до 2,5 мм с помощью двух специальных рукояток 9,13 , установленных на передней стенке машины. Вращение от вала привода передается стационарному валику, а затем через шестеренки сменному, размолочному и питающему валикам. Размолочные валики вращаются с разной частотой в противоположные стороны.

В нижней части корпуса по касательной к цилиндрической поверхности размолочных валиков установлены на осях два скребка 10 , которне очищают поверхность размолочных валиков от прилипших частиц продукта.

80

Рис. 5.1. Механизм МДП-11-1 для дробления орехов и растирания пищевого мака:
1 - корпус; 2 - фиксирующий винт; 3 - загрузочный бункер; 4 - шибер; 5 питательный валик; 6, 11 - передняя стенка; 10 - скребок; 7. 12, 15 - размолочные валики; 9, 13 - рукоятка: 14 - ползунок

Принцип работы механизма МАП-11-1. Продуктыиз бункера в определенном количестве через зазор между шибером и питательным валиком подаются к размолочным валикам, которые вращаются с разной скоростью, измельчая продукт путем сжатия и сдвига.

Механизм МС12-40 устроеп аналогично механизму МАП-11-1, но приводится в действие от привода ПГ-0,6 и имеет небольшие конструктивные отличия.

Таблица 5.1. Массогабаритные характеристики измельчительных механизмов

Параметр	Марка механизма	
	МАП-11•1	МС12-40
Производительность, кг/ч:		
дробления ядер ореха на кропшку	20	40
растирания мака	15	15
Габаритные размеры, мм:		
длина	365	390
ширина	310	310
высота	240	240
Масса, кг	16	21
Количество сменнялх валиков	4	4
Максимальный зазор, мм	2,5	2,5

Правила эксплуатации размолочных механизмов МАП-11-1 и МС12-40. Перед началом работы проверяют са-нитарно-техническое состояние размолочного механизма. Затем проверяют надежность крепления сменных механизмов в гнезде привода и работу машины на холостом ходу, после чего загружают ее продуктами. Запрещается проталкивать продукты руками, а гакже ремонтировать и прочищать разгрузочное устройство во время работы машины.

В механизмах МАП-11-1 и МС12-40 может возникнуть усиленный шум из-за большого зазора или нагрев валиков в результате их перекоса либо чрезмерного сжатия. Для устранения шума или нагрева необходимо вращением рукоятки установить равномерный зазор между валиками не более 2,5 мм.

При большем зазоре межлу скребком и поверхностью валиков продукт остается на поверхности валика и вновь попадает в зону измельчения. В этом случае необходимо винтом прижать скребок к поверхности валика. Производительность этих машин дана в табл. 5.1.

Машина gля измельчения кофе (кофемолка) МИК-60 (рис. 5.2) предназначена для размола кофе на предприятиях общественного питания. Она состоит из корпуса 4, электродвигателя 5, размо-

лочного механизма, загрузочного бункера 13 и трубы для выгрузки 22. Корпус машины сварен из листовой стали, внутри него на четырех амортизаторах установлен электродвигатель.

Рис. 5.2. Кофемопка МИК-60:
1 - опора из резины; 2 - основание машины; 3 - амортизатор; 4 - корпус;
5 - электродвигатепь; 6 - рабочая камера; 7 - подвижный диск; 8 - неподвижный жернов; 9 - фланец; 10 - сьемная крышка; 11 - рукоятка; 12 магниг; 13 - загрузочный бункер: 14 - откидная крышка; 15 - магнитный пускатель; 16 - кольцо; 17 - электровибратор; 18 - панель; 19 - резьбовая втулка; 20-6опт; 21 - демферные пружины; 22 - труба для выгруэки; 23 прижимная планка

Размолочный механизм состоит из двух размолочных жерновов - неподвижного 8 и вращающегося 7. Неподвижный жернов установлен в торце корпуса рабочей камеры и крепится совместно с механизмом регулирования величины зазора. Вращающийся жернов установлен на конце вала электродвигателя совместно с подвижным диском.

В верхней части корпуса находится загрузочный бункер с магнитом 12 для улавливания металлических частиц, попадающих с зернами кофе. Для полной разгрузки измельченного кофе на трубе для выгрузки установлен электровибратор 17.

Эксплуатация машины для измельчения кофе МИК-60. Открыв откидную крышку 14 машины, в загрузочный бункер загружают зерна кофе, а на трубе для выгрузки закрепляют пакет или устанавливают емкость для смолотого кофе. Пусковой кнопкой, установленной на панели, включают машину. Вращенис от электродвигателя передается вращающемуся жернову. Зерна кофе из бункера поступают самотеком в пространство между жерновами и измельчаются. Измельченный кофе лопатками вращающего диска подается в трубу для выгрузки, которая колеблется с помощью электровибратора, обесиечивая удаление всего кофе без остатка в машине.

Правила эксплуатации машины МИК-60. ПереА включением машины проверяют ее санитарное состояние и только потом производят загрузку бункера зернами кофе. В процессе работы запрещается проталкивать продукт руками, а также прочищать разгрузочное устройство во время работы машины.

При размоле кофе происходит естественный износ жерновов и постепенное увеличение зазора между ними, что приводит к увеличению размера частиц молотого кофе.

По мере износа жерновов производят регулировку зазора (способ регулирования описывается в инструкции, прилагаемой к машине). При значительном износе жерновов затачивают их зубья или производят замену новыми.

Машина должна содержаться в чистоте. После окончания работы необходимо провести санитарную обработку влажной тканью, а затем насухо протереть.

Сменные механизмы также должны содержаться в чистоте. Поэтому ежедневно после окончания работы их необходимо протирать мягкой тканью, а также периодически промывать сначала теплой мыльной, а затем чистой водой и насухо протирать чистой тканью.

Размолочный механизм МС12-15 (рис. 5.3) предназначен для измельчения сухарей, специй и других твердых продуктов.

Он состоит из алюминиевого цилиндрического корнуса 9, отлитого вместе с загрузочной воронкой. Внутри корпуса расположены конусные рабочие органы: шнек 8, вращающийся 2 и неподвижный 3 жернова, которые приводятся в движение от универсального привода ПМ-1,1.

Шнек служит для непрерывной подачи продукта к размолочным жерновам. Степень помола зависит от зазора между размолочными поверхностями. Зазор изменяется осевым перемещени-

Рис. 5.3. Размолочный механизм MC12-15:
1 - хвостовик вала; 2 - подвижный жернов; 3 - неподвижный жернов; 4 попасти; 5 - накидная гайка; 6 - регулировочная гайка; 7 - хвостовик жернова; 8 - шнек; 9 - корпус; 10 - приводной вал; 11 - шарикоподшипник

ем неподвижного жернова с помощью регулировочной гайки 6, на которой имеются стрелки с надписями «Мелко» и «Крупно».

Принцип работы размолочного механизма MC12-15. Продукт из загрузочной воронки с помощью шнека направлястся к жерновам для измельчения до заданных размеров. Аалсе измсльченный продукт по вертикальному разгрузочному устройству поступтает в подставленную емкость.

Правила эксплуатации размолочного механизма МС12-15. Проверить надежность крепления сменного механизма в гнезде универсального привода и его работу на холостом ходу.

Во время работы машины запрещается подталкивать продукт руками; если механизм не обеспечивает нужного помола продукта, следует разобрать его, очистить рефленые рабочие поверхности и регулировочной гайкой установить необходимый зазор.

Сменный механизм должен содержаться в чистоте. Поэтому после окончания работы проводится санитарная обработка корпуса и рабочих органов.

Механизм МИГІ-11-1 устроен аналогично механизму МС12-15, но имеет небольшие конструктивные отличия, а также меньшие габаритные размеры и массу.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как регулируется степень иэмельчения продукта на размолочном механизме?
2. Какие правила техники беэопасности необходимо соблюдать при работе на сменных механизмах МДП-11-1 и МС12-40?
3. Каково устройство и принцип действия кофемопки МИК-6О?
4. Из чего состоит размолочный механизм MC12-15?

Глава 6

ОБОРУДОВАНИЕ ДЛЯ ПРИГОТОВЛЕНИЯ И ОБРАБОТКИ ТЕСТА И ПОЛУФАБРИКАТОВ

6.1. КЛАССИФИКАЦИЯ МАШИН ДЛЯ ПРИГОТОВЛЕНИЯ ТЕСТА И ПОЛУФАБРИКАТОВ

В кондитерских цехах предприятий общественного питания для приготовления кондитерских и хлебобулочных изделий применяются машины для просеивания муки, тестомесильные, тестораскаточные, взбивальные, размолочные машины и специалыыые приводы с комплектом механизмов.

Машины для просеивания муки предназначены мя удаления из нсе носторонних примесей, а также для рыхления и оботащения кислородом воздуха. Готовые изделия из такого теста получаются более пышные и вкусные. Широкое применение на прелприятиях общественного питания получили просеиватели МПМ800 и МС24-300 к универсальному приводу ПГ-0,6 и малогабаритный просеиватель МПМВ-300.

Тестомесильные машины предназначены для замеса теста из пшеничной и ржаной муки. В пастоящсе время используются тестомесильные машины TMM-1 с индивидуальным приводом.

Тестораскаточные машины используются для раскатывания крутого дрожжевого, песочного и слоеного теста. На предприятиях общественного питания для приготовления пельменей, пирожков, лапши и других изделий широко применяется тестораскаточная машина МРТ-60M.

Взбивальные машины предназначены для замеса теста, взбиваиия кремов, яичного белка и сливок. Процесс взбивания заключается в перемешивании пищевых продуктов и насыщении их воздухом, в результате чего они густеют и значительно увеличинаются в объеме. На предприятиях обществснного питания применяются взбивальные манины MB-35M, MB-60 и многоцелевой механизм МС4-7-8-20.

На предприятиях общественного питания в кондитерских цехах используют и другие машины и сменные механизмы. Они аналогичны рассмотренным и отличаются от них лишь тем, что за счет модернизации существующих машин у новых моделей повышена производительность выпускаемой продукции, улучшены экономические показатели, а также повышена продолжительность их безотказной работы.

6.2. ПРОСЕИВАТЕЛЬНЫЕ МАШИНЫ

Машина gля просеивания муки МПМ-800 (рис. 6.1) состоит из осшования 1 , на котором установлен электродвигатель 6 , загрузочный бункер 5, труба со шнеком 8 и просеивающей головкой 4 . Привод состоит из электродвигателя взрывобеэопасного исполнения и двух клиноременных передач, которые приводят в движение шнек с ситом 12 и крыльчатку 7 в бункере. Загрузочный бункер 5 имеет решетку, предохраняющую от попадания посторонних предметов в муку, крыльчатку 7 , которая подает муку к вертикальной трубе, и подъемный механизм 2 для поддчи мешков с мукой.

Внутри вертикальной трубы имеется шнек 8 , который подает муку к просеивающему механизму машины. Просеивающий механизм состоит из цилиндрического корпуса с разгрузочным лотком, сита 12 с неподвижными лопастями и разгрузочного окна. Сверху установлена крышка 3 с резиновой прокладкой и откидным закрепляющим болтом 11. У разгрузочного лотка просеивающей головки имеется магнитная ловушка 10 для удаления из муки ферромагнитных частиц и легкоснимаемый рукав 9 из плотной ткани, предупреждающий расыыление муки при выходе ее из машины и поступлении в емкость.

Аля управления машиной установлены магнитный пускатель. автоматический выключатель и кнопки управления.

[^0]
89

Машина комплектуется двумя ситами с ячейками размерами 1,4 и 1,6 мм для муки соответственно высшего, 1 -го и 2-го сортов.

Принцип действия машины для просеивания муки МПМ-800. Мука из загрузочного бункера подается крыльчаткой 14 на шнек вертикальной трубы, по которому поступает внутрь просеивающей головки. Здесь под действием центробежной силы мука, разрыхляясь, проходит через сито в простраиство между корпусом и ситом, опускаясь на дно, и с помощью лопаток постуиает в разгрузочный лоток. Непросеянная мука остается на дне сита и удаляется после останова машины.

Правила эксплуатации машины для просеивания муки МПМ-800. Проверяют санитарно-техническое состояние и наличие заземления. В рабочую камеру корпуса просеивающей головки устанавливают сито необходимого размера. Сверху закрывают крыпткой, которую закрепляют откидным болтом. Под разгрузочный лоток подставлянот емкость. Проверяют мапину на холостом холу.

Нд под'ьемный механизм укладывают мешок с мукой, затем поднимакт его и фиксируоот на требуемой высоте, после чего часть муки высыпают из мешка в загрузочный бункер и нажимают кнопку "Гуск», включая машину в работу.

После включения машины мука из загрузочного бункера подается крыльчаткой к окну вертикальной трубы. Там мука подхватывается шнеком, подается вверх и попадает в сито. Пройдя через ячейки сита, мука лопастями направляется в разгрузочное

Таблица 6.1. Возможные неисправности машины для просеивания муки МПМ-800, их причины и способы устранения

Неисправность	Причина	Способ устранения
После включения машины не обес- нечивается доста- точная подача муки	Пробуксовка ремня, перелающего враще- ние шнеку машины	Выключить машину и вращением натяжного болта шнека перемес- тить электродвигатель, подтянув таким образом ремень

90

окно и через установленную магнитную ловушку по тканевому рукаву поступает в подставленную емкость.

Во время работы машины необходимо следить за тем, чтобы загрузочный бункер был постоянно заполнен мукой. Дополнительную загрузку машины можно производить без ее останова. При длительной работе на машине рскомендустся периодически останавливать ее для очистки сита от примесей и непросеянных частиц муки.

Во время работы машины затрещастся открывать крышку просеивающей головки и оставлять машину без присмотра. Сашитарную обработку манины проводят после окончания работы и останова машины: сначала удаляют остатки муки, потом снимают сито, протирают все детали машины влажной чистой тканью и оставляют просушивать.

Возможные неисправности, которые могут возникнуть в машине для просеивания муки, и способы их устранения приведены в табл. 6.1.

Рис. 6.2. Просеиватель МС24-300:
1 - редуктор: 2, 4 - конические шестерни: 3 - вал: 5 - сито; 6 - скребок; 7 рассекатель; 8 - загрузочный бункер; 9 - просеивающий барабан; 10 - хвостовик

Просеиватель МС24-300 (рис. 6.2) является сменным исполнительным механизмом к универсальному приводу ПУ-0,6. Он состоит из корпуса, конического редуктора 1 с хвостовиком 10 , просеивающего барабана 9 и бункера загрузочного 8 с прикрепленным к нему рассекателем 7. На рабочем валу редуктора установлен барабан, который состоит из каркаса и металической сетки. В комплект машины входят три сменных барабана с разными размерами ячейки сита: $1,4,2,8$ и 4 мм.

При включении машины вращение просеивающему барабану передается от универсального привода через конический редуктор.

Мука из загрузочного бункера 8 через конический рассекатель 7 попадает во вращающийся барабан и под действием центробежной силы прижимается к ситу. Пройдя через ячейки сита, мука поступает по разгрузочному устройству в подставленную емкость.

Рис. 6.3. Просеиватель малогабаритный вибрационный МПМВ-ЗОО:
1 - дебалансы; 2 - электродвигатель; 3-корпус; 4-обечәйка; 5- штырь; 8- подвеска; 7 - раэгруэочная горловина; 8 - сьемная крышка; 9 - загрузочный бункер; 10 - сито; 11 - панель управпения

92

Таблица 6.2. Технические характеристики машин для просеивания муки			
Параметр	Марка машины		
	МПМ-800	MC24-300	МПМВ-300
Производительность, кг/ч	800	300	300
Число сменных барабанов	2	3	2
	1,4 и 1,6	1,$4 ; 2,8$ и 4	1,2 и 1,6
Мощность, кВт	1,1	0,9	0,18
Напряжение, В	220/380	220	220
Вместимость загрузочного бункера, кг	40	$5 \ldots 6$	4... 6
Габаритные размеры, мм:			
Алина	820	335	460
ширина	750	415	380
высота	1470	450	510
Macca, кг, не более	160	14	24,6

При сб́орке машины и ее установке на горловину привода рекомендуется обратить особое внимание на то, чтобы хвостовик конического редуктора попал в гнездо редуктора привода. После этого проверяют просеиватель на холостом ходу. Запрещается во время работы просеивателя проталкивать рукой муку в барабан и оставлять машину без присмотра.

После окончания работы машину выключают и разбирают. Bсе детали протирают влажной тканью и оставляют просушивать.

Просеиватель малогабаритный вибрационный МПМВ-300 (рис. 6.3) состоит из корпуса 3, сита 10, загрузочного бункера 9 и электродвигателя с дебалансами 1. Корпус представляет собой цилиндр, выполненный из нержавеющей стали и разделенный горизонтальной перегородкой на две части. Сито состоит из металического кольца, затянутого сеткой. Просеиватель машины комплектуется двумя ситами с размерами сторон ячеек 1,2 и 1,6 . Сверху на кольцо устанавлинается цилиндрический загрузочной бункер, который сверху закрывается крышкой. Корпус, сито и элекгродвигатель установлены на пружинной подвеске.

Во время включения электродвигателя дебалансы, установленные на нем, создают колебания сита в горизонтальной и вертикальной плоскостях. В результате такого действия сито совершает сложные пространственные колебания, обеспечивающие прохождение чсрез него муки и дальнейшее продвижение ее к разгрузочному устройству.

Просеиватель устапавливается на производственном столе и прикрепляется к нему двумя болтами. Подключение к электросети осуществляется штепсельным разъсмом. Технические характеристики машин для просеивания муки приведены в табл. 6.2.

После окончания работы все детали просеивателя вытирают сухой, а затем влажной тканью. Окрашенные поверхности промывают мыльной, а затем чистой водой и насухо вытирают.

6.3. ТЕСТОМЕСИЛЬНЫЕ И ТЕСТОРАСКАТОЧНЫЕ МАШИНЫ

Аля замеса различного вида теста на предприятиях обгественного питания используются тестомесильные машины типа TMM$1 \mathrm{M}, \mathrm{MTM}-15$, МТИ-100 и др.

Тестомесильная машина ТММ-1М (рис. 6.4, а) состоит из фундаментной плиты 1 , корпуса 8 , привода, установленного в корпусе машины, дежи 4 на трехколесной тележке 3 и месильного рычага 6 с лопастью.

На чугунной фундаментной плите собраны вертикальный корпус с приводом, а также дежа вместимостью $140 \wedge$, укрепленная на трехколесной тележке. Внутри корпуса размещены редуктор, электродвиг'атель, цепная передача и кривошип, соединенный с месильным рычагом. На боковой стенке корпуса расположены кнопки управления машиной.

дежа представляет собой бак конической формы и крепится к валу с помощью профильного соединения для сообщения сй вращательного движения. Над дежой установлены щиты 5 для предотвращения выбрасывания теста и защиты обслуживающего работника. Рабочим органом служит месильный рычаг, который изогнут и на конце имеет лопасть.

Технические характеристики тестомесильной машины TMM-1M

\qquad
Вместимость дежи, ィ ... 140
94

Рис. 6.4. Тестомесильные маиины ТММ-1М (а) и МТМ-15 (б):
1 - фундаментная ппита; 2 - педаль; 3 - тележка; 4 - дежа; 5 - щит; 6 месильный рычаг; 7 - шарнир; 8 - корпус; 9 - рукоятка; 10 - кнопочный выключатель; 11 - панель; 12 - редуктор; 13 - платформа; 14 - съемный резервуар: 15 - решетка; 16 - месипьные попасти
Габаритные размеры, мм: длина 1295
ширина 840
высота 1005
Macca, кг 350

Принцип действия тестомесильной машипы ТММ-1М. Вращение от электродвигателя через два рсдуктора и цепную передачу получают одюовременно тестомесильный рычаг и дежа. Благодаря одновремонному вращению дежи и тестомесильного рычага в противоположные стороны загруженная продукция интенсивно перемешивается и образует однородную массу, насыщенную воздухом.

Правила эксплуатации тестомесильной маши॥ ы ТММ-1М. Дежу вкатывают на чугунную плигу при поднятом гссгомесильном рычаге и огрддительных щитах. Проверяют скрепление дежи с приводом. Опускают тестомесильный рычаг и щиты.

Выполняя правила техники безопасности и безопасности труда, загружают машину сырьем и приступают к работе. В процессе работы машины нельзя наклоняться над дежой, а также брать пробу.

Аля нормальной работы тестомесильной машины необходимо соблюдать норму загруженности дежи: жидкого теста $80 . . .90 \%$, крутого - на 50% от ее вместимости. Невыполнение этих условий приводит к перегрузке двигателя, быстрому износу и поломке машины.

Продолжительность перемешивания зависит от вида приготовленного теста.

Так, при приготовлении песочного теста в дежу машины загружают все сырье, кроме муки, и замешивают его в течение 25 мин, а затем засыпают муку и продолжают замес еще $2 \ldots 3$ мин до получения однородного теста. При этом не следует превышать рекомендуемую продолжительность замеса, так как это может привести к повышению набухаемосги клейковины муки.

После окониания работы останавливают машину, поднимают тестомесильный рычаг и защитные щиты, нажимают на педаль и скатывают дежу с чугунной фундаментной плиты.

Затем проводят тщательную санитарную обработку машины: очищают щеткой, промывают теплой водой все рабочие органы машины, вытирают поверхность машины влажной, а затем сухой тканью.

Машина ТММ-1М и се модификации широко применяются на предприя'гиях общес'венного питания, так кдк являются самым надежным и экономичным оборудованием.

При появлении возможных неисправностей работник, обслуживающий данное оборудование, обязан немедленно остановить машину, отключить ее от напряжения сети и пригласить мастера по ремонту данного оборудования.

Тестомесильная машина МТМ-15 (рис. 6.4, б) служит для замеса крутого теста. Она состоит из платформы 13, редуктора 12 , съемного резервуара 14 , решетки 15 и авух месильных лопастей 16.

Электродвигатель, а также приборы включения и блокировки расположены на крышке редуктора. Резервуар устанавливается на опоры платформы и, чтобы не лопустить осевое смещение, фиксируется стопорными винтами. Сверху он закрыт решетчатой крышкой с электроблокировкой.

Вращение от электродвигателя через червячно-цилиндрический редуктор передается двум лопастям, находящимся в резер-

вуаре. Продукты, загруженные в резервуар, перемешиваются лопастями и насыщаются воздухом. Загрузку любых продуктов в резервуар можно производить через решетку крышки в процессе работы машины.

Тестомесшльная машина МТИ-100 (рис. 6.5) предназначена мля интенсивного замеса дрожжевого и пресного теста. Она состоит из основания, станины 1 , трех сменных баков 5 , сменных месильных инструментов, 'гележки 2 , двух приводных устройств (для перемешивания продуктов и для подъема бака) и пульта управления

Приводная головка представляет собой корпус, в котором заключены зубчатая передача и планетарный редуктор, клиноременная передача 11 и электродвигатель 12. Рабочими органами в машине служат: месильный крюк для замеса песочного теста, месильный крюк для замеса дрожжевого, пресного и слоеного теста и четырехлопастной месильный инструмент для подготовки полуфабрикатов песочного теста, Рабочая камера (бак) устанавливается на кронштейн, автономно перемещающийся по вертикальным направляющим.

Защитный зонд ограждает рабочие органы и предотвращает разбрызгивание продуктов из бака. В нем имеется загрузочный лоток с откидной крышкой.

Принцип действия тестомесильной машины МТИ-100. После включения машины и подъемного механизма кронштейн, двигаясь вверх, подхватывает бак за цапфы, снимая его с тележки. Одновременно приводная головка с месильным рычагом опускается вниз и производит обработку продукции.

Тестораскаточная машина МРТ-60M (рис. 6.6) состоит из каркаса, привода, двух раскатывающих рабочих валов, механизма регулирования толщины пласта теста, ленточного транспортера, наклонной направляющей плоскости 6 и мукосея 9.

Каркас машины выполнен из уголкового железа и снаружи облицован железными щитами. Подоном 3 он разделен на две части: нижнюю, где размещен электродвигатель и червячный редуктор, и верхнюю, где находятся два рабочих вала для раскатывания теста. В торцевой части машины размещен маховик для изменения толщины слоя раскатанного теста от 0,1 до 50 мм, которая контролируется по шкале, расположенной на верхней правой стойке.

Над раскатывающими валами установлен мукосей, с помощью которого в процессе работы тесто посыпается мукой для исключения налипания его на рабочие валы.

Рис. 6.5. Тестомесильная машина МТИ-100:
1 - станина; 2 - тепежка; 3 - механизм подъема; 4 - рабочий орган; 5 бак; 6 - откидная крышка; 7 - приводная головка; 8 - входной вап; 9 - выходной вал; 10 - крышка: 11 - клиноременная передача; 12 - электродвигатель взбинального механизма; 13 - электродвигатепь подьемного механизма

Аля подачи теста к валикам имеется загрузочный лоток 6 , который имеет предохранительную решетку 7 с автоматической блокировкой. Разгрузочным устройством служит ленточный 98

Рис. 6.6. Тестораскаточная машина MPT-60M:
1 - корпус; 2 - маховик изменения мпщины раскатываемого теста; 3 поддон; 4 - транспортер; 5 - вспомогательный лоток; 6 - загрузочный ноток; 7 - предохранительная репетка; 8 - фиксатор; 9 - мукосей; 10 - шкала контроля толщины тесга; 11 - микровыключатель; 12 џабочий вал; 13 - кнопочный выключатель

транспортер, под которым установлен поддон, куда ссыпается Аишняя мука.

Технические характеристики тестораскаточной машины MPT-60M

Производительность, кг/ч 60
Мощность, кВт 0,6
Габаритные размеры, ми:
длина 1050
ширина 740
высота 1200
Macca, кг 200

Принции действия тестораскаточной машины МРТ-60М. Приготовленное тесго массой не более 10 кг укладывают на наклонный стол и направляют к вращающимся валикам, которые захватывают и раскатывают его. Тесто в виде ленты опускается на конвейер, уклддывающий тесто на поддон.

Правила эксплуатации машины тестораскаточпой МРТ-60М. Перед началом работы проверяют соблюдение правил техники безопасности, безопасности трудд, электроблокиронку, правильность установки поддона и шравильность устаповкн заданной толщины раскатки теста. Подготовленное тесто уклалıвают на наклонный стол, включают машину и вручную подают к раскатывающим валикам. Рекомендуется раскатывать тесто в песколько приемов с постепенным уменьшением зазора между в木ликами.

В процессе работы машины запрещается производить чистку наликов и друтих механизмов, а также просовывать руки под пре-

Таблица 6.3. Возможные неисправности тестораскаточной машины MPT-60M, их причины и способы устранения

Нсисправность	Причина	Способ устранения
При нажатии кнопки «Пуск" двигатель ма- шины не включается	Неправильно установ- лено защитное ограж- дение, которое не включило электробло- кировку машины	Правильно устано- вить защитное ограж- дение машины
Во время работы ма- щины происходит пробуксовка ленгы гранспортера	Слабое натяжение це-- пи транспортера	С помощью натяжно- го барабана усилить натяжение цепи транспортера

дохранительную решетку. После окончания работы машину отключают от электросети и удаляют остатки муки из мукосея, поддона, стола и ленты транспортера. Раскатываюцие валики освобождают от остатков теста и протирают сухой тканью.

Возможные неисправности, которые могут возникнуть при работе с тестораскаточной машиной МРТ-60М, и способы их устранения принедены в табл. 6.3.

6.4. ВЗБИВАЛЬНЫЕ МАШИНЫ

Взбивальные машины предназначены для взбивания различных кондитерских смесей и жидкого теста. На предприятиях общественного питания используются взбивальные машины МВ35М, МВ-6 и МВ-60.

Рабочим инструментом взбивальных машин служат легкосъемные взбиватели (рис. 6.7). Прутковые венчики 1, 3, 7, 9, 11, 15 различных форм применяют для взбивания жидких смесей, плоскорешетчатые $2,4,12 \ldots 14$ и фигурные 8,10 взбиватели - для взбивания густых смесей.

Аля взбивания крутого теста применяют крюкообразный 5 и рамный 6 взбиватели. Аля взбивания густых кремов, песочного теста применяют лопастной взбиватель 16. Емкости, в которых взбиваются смеси, представляют собой цилиндрические баки вместимостью $6,20,35,40,60,100$ дм 3. Вместимость бака является главной технической характеристикой взбивальной машшны и указывастся в шифре марки машины.

Рис. 6.7. Сменные инструменты взбивальных машин:

1. 3, 7, 9, 11, 15 - прутковый венчик; 2, 4, 12... 14 - плоскорешетчатые взбиватели; 5 - крюкообразный вэбиватепь; 6 - рамный взбиватель; 8, 10 фигурные взбиватели; 16 - попастной взбиватепь

Взбивальная маиина МВ-35M (рис. 6.8) предназначена для механизации процесса взбивания различных кондитерских смесей (белковых, яично-сахарных, кремов) и жидкого теста в кондитерских цехах предприятий общественного питания. Эта машина состои'т из корпуса, механизма подъема бака и приводного механизма.

Технические характеристики взбивальной машины MB-35М

Вместимость бака, л 35
Мощность, кВт 0,8
Частота вращения взб́ивального вала, об/мин 200... 670
Габаритные размеры, мм:
Аина 750
ширина 530
высота 1180
Macca, кг 175

Рис. 6.8. Взбивальная машина MB-35M:

1 - чугунная плита; 2 - бак; З планетарный механиэм; 4-маховик; 5 - рукоятка; 6 - крышка; 7 - корпус; 8 - кронштейн

На передвижном кронштейне крепится съемный бак 2. С помощью рукоятки механизма подчсма крошштейн 8 может перемещать бак в вертикальном направлении. Внутри корпуса смонтирован привод машины, который состоит из двигателя, клиноременного вариатора скоростей, зубчатых передач и планетарного редуктора. Сменные механизмы взбивателей крепятся к рабочему валу с помощью штифта и фигурного выреза. На боковой стенке машины установлеп автоматический выключатель для нуска и останова двигателя.

Правила эксплуатаңии взбивальной машины MB35 M . Перед началом работы необходимо правильно выполнить требования техники безопасности и строго выполнять правила безопасности труда при работе на машине. Бак 2 закрепляют на кронпгтейне 8 с рукоятками-зажимами взбивального механизма и с помощью соединительной муфты устанавливают нужный взбиватель на рабочем валу. Для соединения сменного взбивателя с выходным валом планетарного механизма фиксатор вала поднимают вверх до упора, а хвостовик взбивателя вводят в вырез вала, носле чего фиксатор опускают. При этом он своей втулкой ьлотно обхватывает вал и хвостовик взбивателя.

Затем в бак загружают продукты и вращением рукоятки 5 механизма подъема устанавливают его на таком уровне, чтобы зазор между взбивателем и дном бака был не менее 5 мм.

После включения двигателя машины вращением маховика 4 вариатора устанавливают нужную скоросІь взбивателя, наблюдая за стрелкой на шкале. Регулировку скорости разрешается производить только на ходу мапины, ири включенном двигателе. При необходимости через специдльный лоток в крышке в бак добанляют иродукты, которыми можно загружать не более $2 / 3$ объема.

По окончании работы выключают машину, онускают кронштейн с баком вниз и снимают его с машины. Затем снимают взбиватель и проводят санитарную обработку всех деталей машины.
102

Взбивальная машина MB-6 (рис. 6.9) используется главным っбразом в холодном цехе для приготовления сливок, муссов, майонеза и других изделий. Она состоит из корпуса с крышкой, бака, устанавливасмого на кронштейне, и взбивальных инструментов, получающих планетарное движение от привода.

В верхней части корнуса размещен привод, состоящий из электродвигателя, клиномерный вариатор скоростей и зубчатых перелач - цилиндрической, конической и планетарной. Конструкция машины дает возможность перемещения электродвигателя путсм вращения специальной рукоятки, расположенной на корпусе мапины для изменения скорости вращения взбивателя. На корпусе машины установлен указатель скорости вращения взбивателя, определяющий число оборотов взбивателя. Аля крепления бачка иредусмотрен специальный кронштейн. Машина комплектуется лвумя баками и двумя сменными взбивателями: прутковым и четырехлопастным. Крешление сменного взбивателя па валу осуществляется специальным фиксатором.

Принцип действия взбивальной машины MB-6. Вращение от электродвигателя передается клиномерному вариаrору скоростей, а от него через передачи планетарному редукгору и взбивателю.

Правила эксплуатации взбивальной мапины MB-6. Перед началом работы проверяется санитарное состояние машины. Затем в бак загружают продукцию массой не более 4 кr, опускают в нее сменный взбиватель и устанавливают его на крон-

Рис. 6.9. Взбивальная машина MB-6:

1 - бак; 2 - крышка планетарного релуктора; З - крышка вариатора; 4указатель скорости вращения взбивагеля

штейне машины. Укрепляют взбиватель на выходной вал планетарного механизма. Для взбивания сливок и яично-белковой и сахарной смеси используют прутковые взбиватели, а для других продуктов - четырехлопастной. После включения машины с помощью специальной рукоятки устанавливают требуемую скорость вращения взбивателя. Для увеличения скорости вращения взбивателя рукоятку нужно вращать по часовой стрелке, а для снижения - против.

Во время работы машины запрещается добавлять продукты в бак, а также снимать бак или взбиватель до полной остановки машины или механизма.

После окончания работы взбиватель и бак освобождают от продуктов и промывают горячей водой, а корпус машины протирают чистой тканью.

Технические характеристики взбивальной машины MB-6

Вместимость бака, л 6
Мощность, кВт 0,18
Габаритные размеры, мм:
Алина 450
ширина 550
высота 300
Macca, кг 35

Взбивальная машина Мв-60 (рис. 6.10) предназначена для перемешивания и взбивания различных продуктов в крупных кондитерских цехах предприятий общественного питания.

Она состоит из чугунной шлиты 12, станины, электродвигателя, коробки скоростей 5 , тележки 1 , бака 2 и взбивателей 3.

Станина, укрепленная на чугунной плите, представляет собой полую чугунную стойку прямоугольного сечения, в которой установлена коробка скоростей. С помощью коробки скоростей передается вращение от двигателя к взбивателю и осуществляется изменение скорости его вращения.

Аля установки бака на машину имеется специальный кронштейн 9 с зажимами, который снабжен механизмом подъема и опускания.

Машина комплектуется тремя взбивателями: крюкообразным, плоскорешетчатым и прутковым.

Принцип действия взбивальной машинь. МВ-60. Устройство и принцип действия машины МВ-60 аналогичны таковнм машины МВ-35M, однако есть отличие: машина МВ-60 имеет коробку скоростей, рукоятка которой установлена на поверх-

Рис. 6.10. Взбивальная машина MB-60:
1 - тележка: 2-бак; 3 - взбиватель; 4 - крышка планетарного механизма; 5 - коробка скоростей; 6 - рукоятка; 7 - электродвигатель; 8 - корпус; 9 кронштейн; 10 - рукоятка подьема кронштейна; 11 - направляющие; 12 чугунная плита

ности корпуса приводной головки. В рукоятке установлен фиксатор и микропереключатель для отключения электродвигателя при изменении частоты вращения взбивателя.

Тележка 1, входящая в комплект машины, служит для транснортирования бака. На корпусе машины размещены кнопочный пускатель и маховик подъема и опускания кронштейна.

Технические характеристики взбивальной машины MB-6D

Вместимость бака, л 60
Мощность, кВт 1.7
Габаритные размеры, мм:
длина 1250
ширина 615
высота 1350
Macca, кг 480

Правила эксплуатации взбивальной машины МВ-60. Перед началом работы проверяют санитарное состояние машины. После этого бак закреплют на кронштейне машины и на вертикальном валу устанавливают сменный взбиватель, соответ-

Таблица 6.4. Возможные неисправности взбивальных машин, их причины и способы устранения

Неисправность	Причина	Способ устранения
При включении дви- гателя взбиватель не вращается	Ослабло натяжение ремня вариатора	Остановить машину, снять крышку и уси- лить натяжение ремня вариатора
Несоответствие фак- тической скорости вращения взбиватсля скорости, указанной стрелкой на шкале	Растяжение ремня вариатора	С помопцю крон- штейна двигателя натянуть ремень или заменить его новым
Руколтка переключа- теля скоростей не фиксируется в уста- новленном положе- нии	Ослабло натяжение винта, поджима- ющего пружину	Затянуть винт

ствующий обрабатываемому продукту. Сменный взбиватель устанавливают на вал хвостовиком и поворачивают против часовой стрелки до упора. При этом штифт вала должен попасть в паз хвостовика взбивателя.

В бак загружают продукты и, вращая маховик, поднимают кронштейы с баком в верхнее положение 'так, чтобы между взбивателем и дном бака был зазор не менее 5 мм. Убедившись в том, что взбиватель не касается стен и дна бака, с помощью коробки скоростей устанавливают нужную скорость. Изменять скорость вращения взбивателя во время работы машины запрещается. Если необходимо, машину останавливают, изменяют скорость вращения взбивателя и вновь включают.

После окончания работы машину выключают, опускают кронштейн с баком в нижнее положение и снимают взбиватель. Взбиватель и бак промывают горячей водой и просушивают. Машину протирают влажной, а затем сухой тканью.

Машина взбивальная унифицированная МВУ-60 предназначсна Аля взбивания пенообразных кондитерских полуфабрикатов, а также причотовления блинного, вафельного и друтих видов теста.

Устройство и принџип действия машины МВУ-60 аналогичнь таковым машины MB-60, однако ес'ть отличие: машина МВУ-60 укомплектована двумя взбивателями: прутковым (с центральным стержнем и прутками в виде колец, расположенных по полспирали), предназначенным мля взбивания легких смесей (вафельное тесто, белково-сахарный нолуфабрикат и т. п.), и прутковым четырехлопастным, предназначенным для взбивания кремов. Лонасти четырехлопастного пруткового взбивателя взаимно перпендикулярны, прутки одной лопасти расположены вертикально, другой - горизонтально.

На машине МВУ-60 на коргусе вращающегося кронштейна установлен скребок дя очистки стенок бака, который легко снимается Аля санитариой обработки. Усıройство для фиксации скребка и прижатия его к стенкам бака помещено в изолированном от продуктов месте. Для транспортирования бака с продукцией имеется тележка.

Возможные неисправности взбивальных мапин, причины и способы их устранения приведены в табл. 6.4.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Расшифруйте маркировку машин TMM-1, МРТ-6ОМ, MB35M.
2. Какие меры предосторожности следует выполнять при работе на просеивательных машинах?
3. Опишите устройство и принцип действия просеивателя муки МПМ-800.
4. Как установить топщину раскатываемого теста при работе на машине MPT-60M?
5. Для чего служит предохранительная решетка в машине MPT60M?
6. Какие взбиватели используются на взбивальной машине MB35 M ?
7. В чем закпючаются правила техники безопасности и безопасности труда на машинах в кондитерском цехе?
8. Как правильно произвести замес теста в тестомесильной машине?
9. В чем состоит принцип действия взбивальных машин?
10. Как регулируется скорость взбивателя на взбивальной машине MB-6O?

Глава 7

ОБОРУДОВАНИЕ ДЛЯ НАРЕЗАНИЯ ХЛЕБА И ГАСТРОНОМИЧЕСКИХ ПРОДУКТОВ

7.1. МАШИНЫ ДЛЯ НАРЕЗАНИЯ ХЛЕБА

Хлеборезательные машины предназначены для нарезания хлеба ломтиками заданной толщины. В настоящее время на предприятиях общественного питания применяются машины для нарезания хлеба MPX-200 и XPM-300M.

Хлеборезательная машина MPX-200 (рис. 7.1) состоит из следующих частей и механизмов: станины, корпуса 4, привода, загрузочного 5 и приемного 1 лотков, механизма резания 6 , механизмов подачи, регулирования толщины среза, точильного приспособления 2 и кнопочного пульта 3 . В круглом корпусе машины размещен дисковый нож, снабженный противовесом. В нижней части корпуса с обеих сторон расположены два охна: для подачи хлеба к ножу и для выхода нарезанных ломтей хлеба.

Привод машины состоиг из электродвигателя, клиноременной и цепной передач. Он обеспечивает планетарное движение ножа и подачу хлеба в зону его вращения. для ручного управления ножом машина снабжена специальной рукояткой, установленной на левой стороне корпуса.

Механизм подачи состоит из ходового вала и каретки с игольчатыми захватами для хлеба. Во время работы машины ходовой вал с помощью шатуна и муфты вращается только в одном направлении, обеспечивая подачу каретки с хлебом влево, в зону вращения ножа.

Механизм толщины среза состоит из диска с делениями толщины нареза и фасонной гайки крепления. Механизм резания ножевой диск, который имеет планетарное движение, так как вращается вокруг собственной оси.

108

Рис. 7.1. Хлеборезательная машина MPX-200:
1 - приемный лоток; 2 - точильное приспособление; З - кнопочный пульт; 4 - корпус: 5 - загрузочный лоток; 6 - механиэм резания

На машине установлено точильное приспособление, которое служит для заточки ножевого диска и состоит из двух карборундовых точильных дисков.

Точильное приспособление размещено в верхней наружной части хлеборезательной машины. Там же расположены две кнопки, соединенные с двумя скребками, которые помещены внутри корпуса машины. При нажатии на кнопки скребки прижимаются с двух сторон к ножевому диску и очищают его от налипшего хлеба.

При останове машины автоматически включается тормозное устройство, которое гасит инерционный момент дискового ножа после выключения машины.

Электроблокировка отключает машину после окончания нарезания хлеба и открытой защитной решетки и в случае, если присмный лоток находится не в правом крайнем положении. Для включения и останове машины установлен кнопочный выключагель с кнопками «Пуск» и "Стоп».

Принцип действия хлеборезательной машины MPX-200. При включении машины вращение от электродвигателя через клиноременную и цепную передачи передается главному валу, а от него - ходовому валу и дисковому ножу. При нарезании хлеба ножевой диск совершает планетарное движение. Хо-

довой вал передает прерывисто-поступательное движение каретке, в которой с помощью игольчатого захвата хлеб подается к ножу. Таким образом, хлеб подается к ножу в тот момент, когда он находится в верхнем положении. Во время резания хлеб неподвижен. Нарезанные кусочки собираются в приемном лотке и затем поступают в подготовленную емкость.

Технические характеристики хлеборезательной машины MPX-200

Производительность, резы/мин 200
Толщина ломтиков хлеба, мм 5... 20
Габаритные размеры, мм: длина 1200
ширинд 600
высота 730
Macca, кг 65

Хлеборезательная машина ХРМ-300М отличается от машины MPX-200 тем, что она не имеет защитной решетки и предохранительного устройства на загрузочном и разгрузочном лотках.

Правила эксплуатации хлеборезательной мдшины MPX-200. Хлеборезательную машину устанавливают на рабочем столе и юодключают к электросеги с помощью птеисельного разъема. Перед началом работы машину осматривают, проверяют ее состояние и растормаживают вал двигателя поворотом рукоятки тормоза против часовой стрелки до упора. Затем проверяют машину на холостом ходу и устанавливают толщину нарезания хлеба, для чего ослабляют фасонную гайку и поворачивают диск с делениями до нужного размера толщины ломтиков хлеба. После этого затягивают фасонную гайку. Как правило, для хлеба используют толщину нарезки $15 \ldots 16$ мм. Затем, открыв защитную решетку и отведя каретку в правое положение, закрепляют на ней хлеб, опускают защитную решетку, нажимағот па кнопку "Пуск». После включения манины происхолит нарездние хлеба и, как только каретка с хлебом займет крайнее леное положение, ограничитель хода каре'ти нажмет на кнопку "Стоп", двигатель машины отключится и одновременно включится электротормоз. После останова машины поднимают ограждающую решетку, передвигают каретку вправо по лотку, закладывают хлеб, закрывают решетку и продолжают нарезание хлеба. В процессе работы на машине необходимо соблодать технику безопасности, не проталкивать хлеб рукой в окно и не ускорять разгрузку хлеба, так как можно травмироватг, руки обслуживаюџцего персонала.

Таблица 7.1. Возможные неисправности машин для нарезания хлеба, их причины и способы устранения

Неисправность	Причина	Способ устранения
При нажатии кнопки «Пуск» электродвигдтель машины не вклю-чается	Неправильно установлены защитные решетки	Правильно установить защитные решетки
При включении двигателя он не работает, а издаст гудение	1. Противовес дискового ножа закреплеі стопорным винтом. 2. На двигатель не подается одна фаза электропитания	1. Выключить машину, отстопорить противовес. 2. Вызвать электромеханика
Ухудшилось качество нарезания хлеба	Затупился дисковый нож или на него налип мякиш хлеба	Заточить нож и очистить дисковый нож

Качество нарезания хлеба зависит от состояния ножевого диска. Затупление его или прилипание к нему кусочков хлеба ухудぃает качество нарезания и увеличивает потери продукщии. Поэтому лисковый нож ежедневно затачивают или зачищают от ос'Іатков хлеба. Аля заточки дисковый нож устанавливаю'т в верхпее положение, закрепляют противовес стопорным винтом и поворачивают на 180° точильное устройство так, чтобы его точильные круги расположились по обе стороны ножа.

Затем освобождают от корпуса машины рукоятку ручного управления ножом, вращая ее по стрелке, указанной на корпусе машины, производят заточку дискового ножа.

Аля периодической зачистки ножа от хлеб́а нужно при вращепии рукоятки дискового пожа одновременно нажать две кнопки управления скребками. Скребки, прижимаясь с двух сторон к вращающемуся пожевому диску, будут зачищать его от налипшею) мякиша хлеба.

После окончания работы на машине ее выключают и отключа-心г от электросети, очищают от хлебных крошек специальным приспособлением и вытирают сухой тканью.

Некоторые возможные неисправности, возникающие при рабоюе машин для нарезания хлеба, их причины и способы устране॥ия представлсны в табл. 7.1.

7.2. МАШИНЫ ДЛЯ НАРЕЗАНИЯ ГАСТРОНОМИЧЕСКИХ ПРОДУКТОВ

Аля нарезания различных видов колбас, ветчины, сыра и рулетов на предприятиях общественного питания применяют машины МРГ-300А и МРГУ-370.

Машина gля нарезания гастрономических проgуктов МРГ3004 (рис. 7.2) состоит из коргууса, привода, дискового ножа, двух лотков, регулятора толщины нарезания и точильного приспособления.

Привод машины состоит из электродвигателя, двух червячных редукторов и кривошипно-шатунного механизма. Один червячный редуктор приводит в движение дисковый нож, другой лоток с продуктами.

Два сменных лотка предназначены для нарезания продуктов нод прямым углом и под углом от 30 до 90°.

Рис. 7.2. Машина для нарезания гастрономических продуктов МРГ-300A:
1 - пакетно-купачковый выключатель; 2 - основание корпуса; 3 - лимб; 4 ручка; 5 - опорный стоп; 6 - дисковый нож: 7 - эажим; 8 - рычаг: 9 - подвижная опора; 10 - загрузочный поток; 11 - фиксатор; 12 - лопатка; 13 ключ

112

Механизм регулирования толщины нарезания представляет собой опорный стол, перемещаемый с помощью ручки 4 относительно плоскости ножа 6. На ручке установлен лимб с делениями, соответствующими величинам зазора между плоскостью ножа и онорным столиком.

Технические характеристики машины для нарезания гастрономических продуктов МРГ-300А

Производительность, резы/мин 45
Максимальное сечение загружаемого продукта, мм 150×150
Габаритные размеры, мм:
дина 665
ширина 570
высота 470
Maсса, кг 45

Принцип действия машины Аля нарезания гастрономических продуктов МРГ-300А. При включении машины вращается дисковый нож. Загрузочный лоток 10 надвигает продукт на нож, который совершает возвратно-поступательное движение. Нарезанные ломтики продуктов проходят между ножом и опорным столом 5 и поступают в приемный лоток. По окончании нарезания продукта автоматический выключатель отключает машину; после останова можно снова закладывать продукты в загрузочный лоток.

Машина gля нарезания гастрономическцх товаров универсальная МРГУ-370 имеет устройство и принцип действия, аналогичные машине МРГ-300А. Отличительной особенностью является паличие в ней игольчатого транспортера и сбрасывателя, которые укладывают в стопку продукты на разгрузочном лотке.

Правила эксплуачации машины МРГУ-370. Перед началом работы осматривают машину и проверяют санитарное состояние ее рабочих органов, надежность крепления ножей и исправность зануления. Аля определения качес'тва заточки ножа используют полоску газетной бумаги. При качествениой заточке бумага ровно прорезастся ножом, при некачественной - рвется. Запрещается проверять лезвие ножа рукой, так как это может привести к травме пальцев руки.

Перед загрузкой машины продуктом ее обязательно проверяют на холостом ходу. Затем продукт закладывают в загрузочный лоток так, чтобы он под действием собственной массы мог свободно опираться на поверхность опорного стола. После этого на лимбе устанавливают требуемую толщину нарезания продукта и включают двигатель машины. Дисковый нож машины получает

Таблица 7.2. Возможные неисправности машин для нарезания гастрономических продуктов, их причины и способы устранения

Неисправность	Причина	Способ устранения
При нарезании про- дукт чрезмерно кро- шится	Затупился иож. Зани- жепа толщина нареза- ния продукта	Заточить нож. Увели- чить на лимбс толщииу нарезания продукта
Машина не ндрезает продукт	Продукт завис в лотке и не опускается к ножу	Отключитє машину и заменить продукт
Во время работы машины отключастся двигатель	Завышена толщина нарезания продукта	Уменьшить на лимбе толщину нарезания пролукта

враща'тельное движенис, а лоток с продуктом - возвратно-поступательное. Во время работы машииы запрещается загружать продукты в лоток и проталкинать их руками. Загрузку продуктов в лоток можно производить только при ныключенном двитателе и полном останове машины. После окончания работы машину отключают от электросети, ироводят ненолную разборку и санитарную обработку. Потом тщательно промывают все детали горячей водой и насухо вытирают чистой тканью.

Возможные неисправности, возникающие при эксплуатации машин для нарезания гастрономических продуктов, и способы их устранения приведены в табл. 7.2.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите основные детали машины MPX-2ОО. Дпя чего они служат?
2. Как установить толщину нарезания хлеба на машине XPM300M?
3. Какую роль играет электроблокировка на машине MPX-2OO?
4. Какие неисправности могут возникнуть в хлеборезательных машинах и как их устранить?
5. Назовите основные части машины для нарезания гастрономических продуктов МРГ-ЗООА.
6. Как определить качество заточки ножа машины МРГУ-З7О?
7. В чем заключаются правила техники безопасности и безопасности труда при работе на машине МРГ-300А?

Глава 8

ОБЩИЕ СВЕДЕНИЯ О ТЕПЛОВОМ ОБОРУДОВАНИИ

8.1. КЛАССИФИКАЦИЯ ТЕПЛОВОГО ОБОРУДОВАНИЯ

Тепловос оборулование для обработки нродуктов классифицируется по способу обогрева, технологическому назначению, источникам теплоты.

По способу обогрева оборулование подразделяется на оборудование с непосредственным и косвенным обогревом. Непосредственный обогрев - это нередача теплоты через разделительную сгенку (плита, кищтильник). Косвенный обогрев - это персдача тешлоты через промежуточную среду (пароводяная рубашка котла).

По технологическому назначеншю тепловое оборудование подразделяется на универсальное (электроплита) и специализированное (кофеварка, пекарский шкаф).

В зависимости от источников тепsоты тепловое оборудование подразделяется на электрическое, газовое, огневое и паровое.

Тепловые аппараты можно также классифицировать по принципу действия - непрерывного и периодического.

По степени автоматизации тепловое оборудование подразделяется на неавтоматизированное, контроль за которыми осуществляет обслуживающий работник, и автоматизированное, где контроль за безопасной работой и режимом тепловой обработки обеспечивается с помощью приборов автоматики тепиового аппарата.

На предприятиях общественного питания тепловое оборудование может использоваться как несекционное или секциошное модулированное.

Несекционное оборудование - это оборудование, которое различается по габаритам, конструктивному исполнению и архитектурному оформлению. Такое оборудование не предназначено мя работы с другими видами теплового оборудования. Несекци-

онное оборудование дмя своей установки требует значительных производственных площадей, так как обслуживание такого оборудования осуществляется со всех сторон.

В настоящее время промышленность осваивает серийное производство секционного модулированного оборудования, применение которого целесообразно на крупных предприятиях общественного питания. Преимущество секционного модулированного оборудования в том, что выпускается оно в виде отдельных секций, из которых можно комплектовать различные технологические линии. Секционное модулированное оборудование имеет единые размеры по длине, ширине и высоте. Такое оборудование устанавливается линейно по периметру или по центру помещения, и установленная секция способствует повышению производительности труда и общей культуры на производстве.

На все виды тепловых аппаратов разработаны и утверждены ГОСТы, которые являются обяэательными для всех заводов и предприятий, связанных с выпуском или эксплуатацией оборудования.

В ГОСТах указываются: наименование аппарата и его индексация, параметры, требования техники безопасности, безопасности труда и производственной санитарии, комплектность, а также требования к транспортированию, упаковке и хранению.

Все тепловые аппараты имеют буквенно-цифровую индексацию, первая буква которой соответствует наименованию группы, к которой относится данный тепловой аппарат, например котел К, шкаф - Ш, плита - П и др. Вторая буква соответствует наименованию вида оборудования: пищеварочный - П, непрерывного действия - Н и др. Третья буква соответствует наименованию теплоносителя: электрический - Э, газовый - Г и др. Цифрами обозначают основные параметры теплового оборудования, например КПП-160 - котел пищеварочный, паровой, вместимостью 160 ^.

8.2. ТЕПЛОВАЯ ОБРАБОТКА ПРОДУКТОВ

В большинстве случаев для приготовления пищи продукты варят, жарят, тушат, т.е. подвергают тепловой обработке. Под действием определенного количества теплоты продукты изменяю'т физико-химические свойства: жиры плавятся, белки свертываются, меняется вкус, цвет, запах и т.д. Кроме того, в продуктах пе-

реработки под действием высокой температуры уничтожается болезнетворная микрофлора.

При тепиовой обработке происходит естественный самопроизвольный переход теплоты от его источника к нагреваемому продукту, поскольку источник теплоты всегда имеет температуру выше, чем продукт.

Источниками теплоты в аппаратах нагрева могут быть топливо, электроэнергия и теплоносители. На практике применяются в основном такие теплоносители, как водяной пар, вода, масло. Основные способы тепловой обработки пищевых продуктов - варка и жаренье. Варка продуктов может осуществляться несколькими способами: в жидкой среде, в автоклавах, в сосудах с пониженным давлением.

Аля всех видов варки характерны две стадии: быстрый нагрев и слабый нагрев жидкой среды.

В некоторых случаях используют аккумулированную теплоту и варку "острым паром». Варка продуктов "острым паром» осуществляется в результате соприкосновения насыщенного пара с обрабатываемым продуктом.

Процесс жаренья продуктов осуществляется без добавления жидкой среды. Жаренье продуктов производят в неглубокой посуде - сковороде, предварительно смазанной жиром, и во фритюрнице, в которой имеется большое количество жира, и продукт полностью загружают в горячий жир.

На предприятиях общественного питания используют также и вспомогательные способы тепловой обработки продуктов: тушение, запекание, припускание, ошпаривание, опаливание и обработку продуктов инфракрасным обогревом.

Новым способом тепловой обработки продуктов является обработка в электромагнитном поле сверхвысокой частоты (СВЧ). В таких случаях происходит нагрев продуктов по всему объему. Надо отметить, что СВЧ-поле нагревает только продукты, а рабочая камера, посуда и воздух не нагреваются. СВЧ-нагрев имеет большое преимущество по сравнению с традиционными способами тепловой обработки продуктов. Продолжительность приготовления сокращается в 10 раз, и для большинства продуктов она составляет не более 5 мин. Значительно улучшаются вкусовые качества и внешний вид приготовляемых продуктов. Надо помнить, что в СВЧ-аппарате применяют посуду из диэлектриков, т.е. из стекла, фарфора, пластмасс и керамики. Использовать металлическую посуду категорически запрещается, так как она выводит из строя генератор этого аппарата.

8.3. ПОНЯТИЕ О ТЕПЛООБМЕНЕ

Передача теплоты от одной среды к другой называется теплообменом. Различают два основных вида теплообмена: соприкосновением и излучением. Теплообмен соприкосновением заключается в том, что тепло от более нагретого тела передается другому, менее нагретому непосредственно соприкосновением. Теплообмен излучением связан с двойным переходом энергии. Тепловая энергия более нагретой поверхности переходит в лучистую, которая проходит через пространство и, попадая на более холодную поверхность, вновь становится тепловой. Такой способ́ передачи теплоты происходит, например, в процессе приготовления шашлыка на мангале.

Теплообмен в жидкостях и газах называется конвекцией. В процессе конвекции нижние слои жидкости пагреваются, поднимаясь вверх, тереносят 'теплону, а менее нагретые слои опускаются вниз, г.е. происходит перемешивание нагретых и ненагретых слоев.

Теплообмен внутри тел называется теплопроводностью. Например, если нагревается дно металлической посуды, быстро нагреваются и ее сгенки. Посуда и аппараты, изготовленные из диэлектриков, имеют значительно меньший коэффициент теплопроводности, чем металлические.

8.4. ИСТОЧНИКИ ТЕПЛОТЫ

Топливо и его состав. Топливо - сложиое органическое соединение, способное при горении выделять значительное количество тепловой энергии.

По агрегатному состоянию топливо подразделяется на твердое, жидкое и газообразное. K твердому топливу относятся дрова, торф, утоль и горючие сланцы; к жидкому - нефть и продукты ес переработки - бензин, керосин, мазут и печное топливо; к газообразному - природный и искусственный газ.

В состав топлива входят горючие и негорючие элементы. K горючим элементам относягся углерод, водород, сера; к негорючим элементам - азот, зола и влага. Кислород - негорючий элемент, но поддерживает процесс горения.

Арова имеют низкую теплоту сгорания и относятся к местному топливу. Выход летучих веществ большой, что дает хорошую воспламеняемость дров. Зольность древесины незначительная.
118

Торф - продукт неполного разложения органических веществ растительного происхождения при избытке влаги и очень малом лоступе воздуха.

Уголь является высококалорийным топливом, имеет большое содержание углерода, малое содержание влаги и незначительное количество летучих веществ.

Горючие сланцы - слоистая горная порода, используемая в качестве низкокалорийного топлива; применять их рекомендуется после переработки или вблизи мест добычи.

Основным видом жидкого топлива, используемого в тепловых аппаратах пищевой промышленности, является печной мазут, получаемый при переработке нефти. При сгорании он выделяет большое количество теплоты.

В качестве газообразного тоилива используются природные горючие и искусственные газы, которые по своим качествам превосходят все остальные виды. Природные газы добывают из газовых месторождений или попутно из нефтяных месторождений. K искусственным относятся доменный, коксовый и сжиженный газы.

Основными преимуществами газообразного топлива являются высокий КПД газовых аппаратов, возможность использования автоматических устройств, регулирующих тепловой режим и обеспечивающих технику безопасности при работе газовых тепловых аппаратов.

Применение газа улучшает культуру щроизводства, санитарногигиенические условия работы, исключает загрязненность воздушного бассейна населенных пунктов копотью и дымом.

Газовое топливо обладает и отрицательными свойствами: в определенных соотношениях с воздухом образует взрывоопасную смесь; газ ядовит, и поэтому неправильное обращение с ним приводит к несчастным случаям.

Наиболее удобным и гигиеничным является оборудование с электрическим обогревом. В настоящее время на предприятиях общественного питания более 90% всего теплового оборудования работает на электроэнергии.

K преимуществам электрического оборудования по сравнению с аппаратами, имеющими другие источники тепла, относятся: простота обслуживания, хорошие санитарно-гигиенические условия труда и снижение пожарной опасности, возможность работы аппаратов в автоматическом режиме и более высокий КПД.

Главный недостаток оборудования на электрическом обогреве - высокая стоимость электрической энергии и опасность поражения электрическим током.

Электрические нагревательные элементы. Работа электрического оборудования основана на использовании закона ДжоуляЛенца, согласно которому электрическая энергия при прохождении через проводник преобразуется в тепловую. При этом используется свойство проводников нагреваться при прохождении через них электрического тока.

В настоящее время в электротепловых аппаратах используют только металлические проводники, изготовленные из нихрома или фехраля в виде спирали.

По конструктивному исполнению электрические нагреватели с металическим сопротивлением подразделяются на три основные группы: открытые, закрытые (с доступом воздуха) и герметично закрытые (без доступа воздуха).

Открытые нагревательные элементы представляют собой нихромовые спирали, помещенные в керамические бусы или уложенные в пазы керамических панелей. Передача теплоты от спиралей осуществляется путем излучения лучистой энергии. В общественном питании они не нашли широкого применения, так как имеют повышенную опасность поражения электрическим током и пожароопасность. Они плохо защищены от механических повреждений и от коррозийного воздействия влажного атмосферного воздуха.

Закрытые электронагревательные элементы состоят из нагревателей, помещенных в электрозащитную оболочку, которая предохраняет их от механических повреждений. Они применяются в электроплитах и электросковородах.

Герметично закрытые трубчатые электронагреватели (ТЭНы) (рис. 8.1) получили широкое применение в электрическом оборудовании, используемом на предприятиях общественного питания.

Трубчатый электронагреватель выполнен в виде цельнотянутой трубки, изготовленной из углеродистой стали с антикоррозийным покрытием. Внутри трубки находится спираль, запрессованная в изоляцию. ТЭНы имеют разную конфигурацию в зависимости от места их установки и конструкции теплового оборудования.

ТЭНы долговечны и экономичны, их можно погружать непосредственно в воду (кипятильник, мармит, пищеварочный котед), в масло или жир (жаровня, фритюрница), а также помещать в воздухе (жарочная камера, тепловые шкафы). Иногда ТЭНы устанавливают блоками (например, в пищеварочных котлах), что позволяет регулировать тепловой процесс приготовления пищи. ТЭН рассчитан в основном на напряжение 220 B и на работу только в определенной среде.

Рис. 8.1. Трубчатые электронагреватели:
$a-$ конфигурация ТЭНов; б - герметично эакрытый ТЭН: 1 - гайка; 2 эпектроизопяция; З - герметик; 4 - шайба; 5-штуцер; 6 - контактный стержөнь; 7 - стенка трубки ТЭНа; 8 - спирапь; 9 - корпус

Трубчатый электронагреватель ТЭНР (оребренный) имеет одинаковое устройство с ТЭНом, отличаясь от него тем, что ТЭНР имеет бо́льшую поверхность за счет установленных ребер на поверхности трубки.

8.5. ПОНЯТИЕ О ПРОЦЕССЕ ГОРЕНИЯ

Процесс горения топлива основан на химической реакции соединения кислорода воздуха с горючими элементами топлива. Горением топлива называют щроцесс быстрого окисления горючей части топлива с выделением значительного количества теплоты. Часть выделяемой теплоты затрачивается ніа поддержание высо-

кой температуры топлива, без которой горение невозможно. Горение топлива происходит при условии лостаточного притока к нему воздуха и нагрева до температуры воспламенения.

Горение топлива может быть неполным или полным. При неполном сгорании образуется угарный газ, и при этом выделяется не более $1 / 3$ общего количества теплоты, которая могла бы быть выделена при полном сгорании топлива. При полном сгорании углерод образует углекислоту, водород превращается в воду, при этом выделяется наибольшее количество теплоты. Газ воспламеняется только в состоянии движения. Если смесь газа с воздухом нахолится в покое, то сгорание происходит мгновенно, в виде взрыва. Важной качественной характеристикой топлива служит его теплота сгорания, или теплотворная способность, - количество теплоты, измеряемое в килоджоулях (кАж), килокалориях (ккал), которое выделяется одной весовой (1 kr) или объемной $\left(1\right.$ м $\left.^{3}\right)$ единицей топлива при полном сгорании. Теплота сгорания различных видов 'топлива неодинакова, поэтому для сопоставления видов топлива и решения вопроса о замене одного вида топлива другим пведено понятие «условное топливо». Под условным топливом понимают такое тонливо, теплота сгорания которого составляет 29302 кджк/кг (7000 ккал/кг).

8.6. МЕРОПРИЯТИЯ ПО ЭКОНОМИИ ТОПЛИВА

Выбор наиболее экономичного вида топлива и соответствующего теплового ашарата для приготовления пищи является одним из эффективных путей снижения издержек и способствует удешевлению приготовления питания.

Организационно-технические мероприятия по экономии топлива, тепловой и электрической энергии разрабатываются на всех предприятиях общественного питания. Основными задачами мероприятий по экономии топливно-энергетических ресурсов являются:

- ведение контроля за рациональным и экономичным использованием топливно-энергетических ресурсов для каждого оборудования предприятия;
- систематический контроль за техническим состоянием оборудования;
- своевременное включение и выключение оборудования, имея в виду недопустимость их работы в нерабочее время;
- проведение систематической очистки парогенераторов, сосудов, ТЭНов, трубок или змеевиков водонагревателей от накипеобразования;
- увеличение загрузки рабочих объемов оборудования при эксплуатации;
- обеспечсние работы оборудования в автоматическом режиме;
- повышение коэффициента использовапия оборудования;
- внедрсние энергосберегающего оборудования;
- организация работы рационализаторов и изобретателей, направленная на совершенствование, для снижения удельных затрат топлива и энергии;
- тепловые аппараты должны обеспечивать тепловую обработку продуктов при минимальной затрате энсргии, обладать высокой степенью надежности, отвечать требованиям техники безопаснос1и и безопасности трудд.

8.7. ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ТЕПЛОВОГО ОБОРУДОВАНИЯ

Техника безопасности при эксплуатации теплового оборудовании зависит от вида энергоносителя, его параметров, а также технологического назначения.

Безопасность теплового оборудования должна обеспечиваться конструкцией аппаратов, применением всех необходимых конт-рольно-измерительных приборов, предохранительных и защитных устройств, строгим выполнением соответствующих инструкций при эксплуатации данного оборудования.

Эксплудтировать тепловое оборудование имеют право лица, прошедшие обучение по данной специальности и технике безопасности.

Нужно знать, что несоблюдение правил эксплуатации газового оборудования приводит к отравлению газом, а также возникновению взрыво- и пожароопасности. При эксплуатации электрического оборудования возможны только поражение электрическим током и пожароопасность, для парового оборудования опасность гидравлического удара или взрыва. Поэтому работать можно только на исиравном оборудовании, отвечающем требова-

ниям техники безопасности и санитарным нормам, а также строго выполнять инструкции к данному оборудованию.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите осноаные виды теппообмена.
2. Опишите устройство ТЭНа, его основные группы и обпасть применения.
3. Назовите источники теплоты и теплоносители.
4. Приведите примеры экономии топливно-энергетических ресурсов на предприятиях общественного питания.
5. В чем заключается техника безопасности труда при работе на тепловом оборудовании предприятий общественного питания?

Глава 9

ГІИЩЕВАРОЧНЫЕ КОТЛЫ И АВТОКЛАВЫ

9.1. КЛАССИФИКАЦИЯ И УСТРОЙСТВО ПИЩЕВАРОЧНЫХ КОТЛОВ

Варка пищевых продуктов осуществляется в технологических жидкостях (вода, молоко), являющихся компонентами кулинарной продукции. В настоящее время широкое распространение получает также прогрессивный процесс варки в атмосфере влажного насыщенного пара («острый пар") при его непосредственном воздействии на продукты.

Устройство и конструкция пищеварочных котлов должны соответствовать технологическим требованиям конкретного процесса варки пищевого продукта. Основные технологические требования, предъявляемые к конструкциям пищеварочных котлов, сводятся к получению высококачественного готового продукта с максимальным сохранением пищевых минеральных, экстрактных веществ и витаминов при минимальныгх затратах теплоты и физического труда обслуживающего персонала.

В пищеварочных котлах варку в жидкостях при атмосферном данлении проводят в двух режимах и только в котлах типа КЭ - в трех режимах.

Режим 1 - доведение содержимого варочного сосуда до кипения на полной мощности, а затем автоматическое переключение на пониженную мощность (на $1 / 6$ мощности) для продолжения варки процессом "тихого кипения». Этот режим используется при варке супов, борщей и других первых блюд.

Режим 2 - доведение содержимого варочного сосуда до кипения на полной мощности, а затем автоматическое полное отключение нагревателей. Доваривание происходит за счет аккумулированной теплоты без расхода энергии. Этот режим используется мя варки каш, кипячения молока и варки напитков.

Режим 3 - доведение содержимого варочного сосуда до кипения на полной мощности, затем автоматическое переключение на 1/б мощности, а в случде снижения давления в пароводяной рубашке до нижнего заданного предела - переключение на 1/2 мощности нагрева. При повышении давлепия до верхнего предела - вновь автоматическое переключение на $1 / 6$ мощности нагрева. В дальнейшем цикл повторяется. Продолжительность пагрева жидкости до кипения в котле зависиг от многих факторов: начальной температуры жидкости, величины коэффициента теплопередачи жидкости, поверхности нагрева, температуры источников теплоты и др.

Передача теплоты продуктам осуществляется от кипящей жидкости. Внугри продуктов теплота переносится от поверхности к центру за счет тешлопроводности. Большинство пищевых продуктов имеет низкий коэффициент теплопроводности, чем объясняется длительный период их варки.

Продолжительность прогрева продуктов зависит от степени их измельтения. Поэтому увеличение степени измельчешия продуктов приводит также к снижению расхолов электроэнергии и увеличению производительности трудд.

На предприятиях общественного питания эксплуатируются пиџцсварочные котлы различных типов, отличающиеся способом обогрева, вместимость варочного сосуда, видом энергоносителей и конструкıией.

По способу установки пищеварочные котлы классифицируются на неопрокидывающиеся, опрокидывающиеся и со съемным варочным сосудом.

В настоящее время промышленность выпускает неопрокидывающиеся пищеварочные котлы вместимосгью варочного сосуда более 100 л и опрокидывающиеся пищеварочные котлы вместимостью менее 100 л. Пищеварочные котлы со съемочным варочным сосудом имсіот вместимость менее $60 \wedge$.

В зависимости от способа обогрева различают пищеварочные котлы с косвенным и непосредственным подогревом. Так, котлы с непосредственным обогревом могут работать на твердом топливе, газе и электричестве. По конструкции и в эксплуатации они очень просты, но имеют существенные недостатки: низкий КПД, сложная регулировка теплового режима, возможность пригорания продуктов к дну варочного сосуда.

Пищеварочные котлы с косвенным обогревом работают с помошью пароводяной рубашки, где в качестве промежуточного тешлносителя используется дистиллированная или кипяченая вода.

126

В зависимости от давления в варочном сосуде все котлы классифицируются на пищеварочные, работающие при атмосферном давлении, и автоклавы, работающие щри повышенном давлении.

По гсометрическим размерам варочного сосуда пищеварочные котлы классифицируются на немодулированные, секционные модулированные и котлы под функциональные емкости.

Немодулированные пищеварочные котлы имеют цилиндрическую форму варочного сосуда. Секционные модулированные котлы и котлы под функциональные емкости имеют варочный сосуд в виде прямоугольного параллелепипеда.

По классификации все пищеварочные котлы имеют буквенноцифровую индексацию. У немодулированных котлов буквы обозначают группу, вил котла и вил энергоносителя. Цифры ноказывают вместимость варочного сосула (ди ${ }^{3}$, или л). Например, инлекс котла КПЭ-100 расьшифровывается таким образом: К - котел, П - пищеварочный, Э - электрический, 100 - вместимость, л. У секционных модулированных котлов к буквенному индексу добавляются буквы СМ, что означает: секционный модулированный. Например, индекс котла КПЭСМ-60 расшифровывается так: котел пищеварочный электрический секционный модулированыый вместимостью варочного сосуда 60 л.

Пищеварочные котлы под функциональные емкости имеют индекс, включающий в сєбя буквы: К - котел, Э - электрический; число показывает вместимость варочюого сосуда (л). Например, КЭ-100 обозначает котел электрический вместимостью варочного сосуда 100 ィ.

Индекс устройств со съемным варочным сосудом, например УЭВ-40, расшифровывается таким образом: устройство электрическое варочное нместимостью варочного сосуда $40 \wedge$.

Пищеварочные котлы, работающие на повышенном давлении в варочном сосуде, имеют индекс А. Например, АЭ-60 расшифровывается так: автоклав электрический вместимостью варочного сосуда 60 л.

В настоящее время промышленность выпускает пищеварочные котлы твердотопливные, с электрическим, тазовым и паровым обогревом.

По конструкции пищеварочные котлы бывают неопрокидывающиеся [стационарные), опрокидывающиеся, секционные модулированные, с новышенным давлением (автоклав), с функциондльной емкостью, а также устройства электрические со съемным варочным сосудом.

9.2. ЭЛЕКТРИЧЕСКИЕ ПИЩЕВАРОЧНЫЕ КОТЛЫ

Котел пищеварочный электрический неопрокияывающийся КПЭ-100 (рис. 9.1) представляет собой сварную конструкцию, состоящую из цилиндрического варочного сосуда, наружной обшивки котла, покрытого теплоизоляцией и облицовкой.

Замкнутое пространство между варочным сосудом и наружной обшивкой котла служит пароводяной рубашкой котла. K дну наружной обшивки корпуса приварена стальная коробка прямо-

Рис. 9.1. Котел пищеварочный электрический КПЭ-100:
а - вид спереди; б - станция управления; в - вид спева: 1 - реле давления; 2-манометр; З- поворотный кран; 4 - крышка; 5 - клапан-турбинка: 6 отражатель; 7 - прокладка крышки; 8 - откидной болт; \mathcal{G} - наполнительная воронка; 10-двойной предохранительный клапан; 11 - облицовка: 12 тепловая изоляция; 13 - кран уровня воды; 14 - электрод защиты от «сухого хода»; 15 - ТЭНы; 16 - парогенератор; 17 - переключатель режимов; 18 - лөмпа «Нет воды» в парогенераторе; 19 - лампа "Включено»; 20 - трубопровод холодной воды; 21 - противовес крышки; 22 - сливной кран; 23 фильтр спивного крана

128

угольной формы - парогенератор 16, внутри которого находятся шесть ТЭНов 15 , кран уровня воды 13 и электрод защиты от «сухого хода» 14.

Сверху варочный сосуд котла закрывается откидной крышкой 4 , имеющей пружинный противовес 21 , облегчающий подъем и удержание ее в открытом положении. Плотное прилегание крышки к варочному сосуду обеспечивает резиновая термостойкая прокладка 7, уложенная по кольцевому пазу; закрепляется крышка герметично с помощью откидных болтов 8. Аля слива жидкости из варочного сосуда установлен сливной кран 22 с фильтром 23. На котле установлена контрольно-измерительная и предохранительная арматура, которая служит для контроля и регулирует давление пара в варочном сосуде и пароводяной рубашке.

На котле установлены: манометр 2 , кран уровня воды 13 , двойной предохранительный клапан 10 , клапан-турбинка 5 и наполнительная воронка 9 с запорным краном.

На котлах устанавливается электроконтактный манометр, с помощью которого изменяется давление и поддерживается заданный поваром температурный режим в пароводяной рубашке.

В таком манометре имеются стрелки: одна подвижная и две неподвижные, которые перемещаются с помощью специального ключа. Подвижная стрелка показывает давление в пароводяной рубашке котла. Неподвижные стрелки перед началом работы устанавливаются на верхний и нижний пределы давления пара в рубашке.

При включении парогенератора в работу давление пара в пароводяной рубашке начинает возрастать, и при достижении верхнего заданного уровня давления подвижная стрелка совпадает с неподвижной, замыкаются их контакты и котел автоматически переключается на $1 /$ б часть его мощности.

Давление в пароводяной рубашке начинает снижаться, и при совпадении подвижной стрелки с нижней неподвижной котел снова переключается на максимальную мощность. Таким образом работа котла автоматически поддерживается в нужном заданном режиме работы.

Двойной предохранительный клапан состоит из двух клапанов - парового и вакуумного, которые служат для аварийного сброса пара из пароводяной рубашки, когда давление возрастет до $49 \mathrm{\Pi a} /$ см 2, и устранения разрежения в ней после снятия напряжения сети с ТЭНов.

При повышении давления в пароводяной рубашке котла сверх допустимой величины пар через паровой клапан начинает выхо-

дить в атмосферу. Вакуумный клапан открывается под давлением наружного воздуха, когда в рубашке образуется вакуум. Вакуум в рубашке котла создается при охлаждении котла в результате конденсации пара, так как удельный объем пара больше удельного объема воды (конденсата).

Кран уровня воды устанавливается в парогенераторе котла и служит для контроля верхнего уровня воды, а нижний уровень контролирует электрод защиты от "сухого хода".

Клапан-турбинка устанавливается на верхней части крышки котлов и предохраняет варочный сосуд от повышения давления в нем. При повышении давления более 2,5 кПа клапан поднимается и пар по винтовым канавкам через отверстие в корпусе поступает в пароотвод. Турбинка при этом приводится во вращательное движение.

Наполнительная воронка с запорным краном предназначена Аля заполнения парогенератора дистиллированной или кипяченой водой и выпуска воздуха в начальный период работы. Она установлена в верхней части котла и имеет фильтрующую сетку.

K котлу подведены трубопроводы 20 холодного и горячего водоснабжения, которые соединяются в одну поворотную трубу, заканчивающуюся краном с патрубком. Рядом с котлом на стене укреплятся станция управления (рис. 9.1, б), которая представляет собой металлический ящик, внутри которого размещены клеммный щиток, два магнитных пускателя, кнопки «Пуск» и "Стоп», сигнальные лампы 18, 19, реле, плавкие предохранители, переключатель режимов 17 работы котла, тумблеры с надписью "Автоматическая работа" и «Разогрев».

Клеммный щиток служит для подсоединения всех приборов станции управления к электросети. Магнитные пускатели с помощью кнопочного пульта коммутируют напряжение сети на ТЭНах котла, а плавкие предохранители защищают электрические цепи от токов короткого замыкания. Сигнальные лампы служат для контроля подключения котла к электросети и режима его работы. С помощью тумблеров включают требуемый режим работы котла.

Котлы стационарные неопрокидыващиеся с индексом НГ (КПЭ-160НГ) не имеют клапана-турбинки и откидных болтов крепления крышки котла. По всем остальным параметрам они соответствуют котлам типа КПЭ аналогичной вместимости.

Промьшленность изготовляет также котлы КПЭ-160 и КПЭ250. Они имеют такое же конструктивное исполнение, как и котел КПЭ-100, и отличаются только габаритными размерами, мас-

сой, вместимостью и мощностью нагревательных элементов (табл. 9.1).

Правила эксплуатации котла пищеварочного :лектрического КПЭ-100. Перед началом работы проверяют санитарное состояние варочного сосуда, наличие заземления, уровень воды в пароводяной рубашке.

Аля проверки уровня воды открывают контрольный кран и, если через него не идет вода, через наполнительную воронку добавляют в парогенератор дистиллированную или кипяченую воду до появления ее из крана.

Затем проверяют работоспособность клапана-турбинки, приподняв турбинку за кольцо вверх, и двойного предохранительного клапана, нажав несколько раз на рычаг. Потом проверяют воздушный клапан или запорный кран воронки. Специальным ключом устанавливают на манометре верхний и нижний пределы необходимого давления пара в пароводяной рубашке котла.

Проверяют целостность резиновой прокладки крышки и состояние откидных винтов. В варочный сосуд загружают продукты и закрывают крышкой, закрепляя ее откидными винтами. Заполнять продуктами и водой пищеварочный котел нужно не превы-

Параметр	Марка котла		
	КПЭ-100	КПЭ-160	КПЭ-250
Полезная вместимость, л	100	160	250
Мощность, кВт	15	21	30
Напряжение, В	380/220		
Объем воды, заливаемой в парогенератор, л	10	12	14
Продолжительность разогрева, мии	43	55	55
Габаритные размеры, мм: длина ширина высота	$\begin{aligned} & 1100 \\ & 1100 \\ & 1100 \end{aligned}$	$\begin{gathered} 1200 \\ 1150 \\ 110 \end{gathered}$	$\begin{gathered} 1300 \\ 1150 \\ 110 \end{gathered}$
Масса, кг, не более	210	290	330

шая предельного уровня, т.е. на $8 . . .10$ см ниже кромки котла. Устанавливают тумблер на работу нужного режима и нажатием кнопки «Пуск» включают котел в работу. Процесс тепловой обработки продуктов осуществляется автоматически. При необходимости корректируют положение верхнего и нижнего предела давления на электроконтактном манометре в процессе варки. Bо время работы котла контролируют состояние клапана-турбинки, двойного предохранительного клапана, манометра и сигнальных лампा.

После окончания работы отключают котел от электросети с помощью красной кнопки «Стоп». Прежде чем открыть крышку, выпускают пар из варочного сосуда путем поднятия клапана-турбинки вверх до отказа с помощью сухой деревянной палочки, затем ослабляют откидные винты-зажимы и плавно, без рывков откидывают крышку котла.

После выгрузки готовой продукции остывший варочный сосуд и крышку промывают горячей водой и вытирают снаружи сухой чистой тканью. Возможные неисправности пищеварочных котлов даны в табл. 9.2.

Таблица 9.2. Возможные неисправности электрических
пищеварочных котлов, их причины и способы устранения

Неисправность	Причина	Способ устранения
При нажатии на кнопку «Пуск» котел не включается	Сгорели предохрани- тели	Заменить предохра- нители
Котел включен, но долго не нагревается	Вышли из строя один или два ТЭНа	Заменить неисправные ТЭНы
Котел не переклю- чается на автоматиче- скую работу	Неисправно реле или элекгроконтактный манометр	Зачистить контакты реле манометра или заменить их новыми
При работе котла за- горается красная лам- па "Сухой ход"	Нет воды в парогене- раторе	Залить воду в пароге- нератор
давление на мано- метре свыше 53,9 Па (0,55 атм). Предохра- нительный клапап не срабатывает	Неисправен предохранительный клапн	Выключить котел, ра- зобрать клапан, про- мыть и очистить его от накипи

132

Рис. 9.2. Котел пищеварочный электрический опрокидывающийся КПЭ-6О:
а - общий вид; б - схема устройства: 1 - варочный сосуд; 2 - крышка; 3 электроконтактный манометр; 4 - напопнительная воронка; 5 - двойной предохранительный клапан; 6 - станина; 7 - кран уровня; 8 - болт заземления; Я-ТЭНы; 10 - электрод «сухой ход»; 11 - вентиль подачи воды

Надо помнить, что использование котла с загрязненным или неисправным клапаном-турбинкой всегда приводит к аварийным случаям с травмированием и ожогами обслуживающего персонала. При работе с пищеварочными котлами нужно строго выполнять правила техники безопасности.

Котел пищеварочный электрический опрокияывающийся КПЭ-60 (рис. 9.2) и котел КПЭ-40 имеют одинаковое конструктивное исполнение, но различаются по мощности нагревательных элементов, массе и вместимости.

Технические характеристики опрокидывающихся котлов КПЭ-40, -60

КПЭ-40	КПЭ-60
Полезная вместимость, ^......................... 40	60
Мощиость, кВт .. 6	8
Напряжение, В .. 380/220	380/220
Продолжительность разогрева, мин 60	60
Рабочее давление пара в рубашке,	
Па/см ${ }^{2}$ (кгс/см ${ }^{2}$) 39,2 (0,4)	$39,2(0,4)$

Габаритные размеры, мм:		
Алина.	945	945
пирина	640	640
высота 1110	1110
Macca, ki'...	. 98	110

Котел КПЭ-60 состоит из цилиндрического варочного сосуда, изготовленного из нержавеющей стали, и корпуса, покрытого теплоизоляцией и облицовкой. Образованное между ними пространство называется пароводяной рубашкой. В нижней части наружного корпуса имеется съемное дно, в котором установлены три ТЭНа и электрод защиты от "сухого хода». Корпус котла укреплен посредством двух цапф на чугунной вилкообразной станине и может поворачиваться вокруг горизонтальной оси.

На правой стороне станины расположен маховик червячного механизма для опрокидывания котла во время разгрузки варочного сосуда или для его ремонта. На арматурной стойке размещены предохранительный клапан с рычагом и конденсатосборником, электроконтактный манометр и воронка с краном. Кроме этого котел имеет автоматическую защиту ТЭНов от «сухого хода», исключающую возможность их работы при недостаточном уровне воды в пароводяной рубашке котла. Прсдусмотрено автоматическое отключение ТЭНов от электросети при опрокидывании котла. В остальном устройство и принцип работы котла КПЭ-60 аналогичны таковым котла КПЭ-100.

Котел пищеварочный электрический секционный моgулированный КПЭСМ-60 (рис. 9.3) может быть использован на предприятиях общественного питания как отдельно стоящий аппарат, так и в составе технологической линии.

Технические характеристики котла пищеварочного электрического секционного модулированного КПЭСМ-60

Полезная вместимость, л 60
Мощность, кВт 8
Напряжение, В 380/220
Продолжительность разогрева, мин 60
Габаритные размеры, мм:
диина 1050
ширина 840
высота 1160
Macca, кт 180

Котел КПЭСМ-60 ощрокидывающийся состоит из варочного сосуда, заключенного в прямоугольный корпус и установленного

на двух тумбах. Верхняя часть котла выполиепа в виде прямоугольного стола с желобом для слива жидкости. Варочный сосуд закрывается крышкой, которая крепится в стойках на столе. В нижней части варочного сосуда на съемном днище установлены три ТЭНа и электрод «сухого хода». Механизм для опрокидывания котла расположен в правой тумбе. для разгрузки котла от ириготовленной пищи он опрокидывается вперед, а при опрокидывании назал обеспечивается свободный доступ для обслуживания и ремонта парогенератора.

В левой части размещены панель с электроаппаратурой и переключатель режимов котла, а также смеситель воды с двумя кранами и поворотная труба.

Устройство и работа контрольно-регулирующей арматуры котла КПЭСМ-60, а также принцип работы и правила эксплуатации аналогичны таковым котла КПЭ-100.

Рис. 9.3. Котел пищеварочный электрический секционный модулированный КПЭСМ-60:
1 - панель управления; 2 - смеситель; 3 - крышка; 4 - манометр; 5 - двойной предохранитепьный кпапан; 6 - наполнитепьная воронка

Рис. 9.4. Котел пищеварочный электрический секционный модулированный КПЭСМ-6ОМ:
1 - рама; 2 - тумба; 3- ТЭНы; 4 - кран уровня; 5 - варочный сосуд; 6 переключатель; 7 - кнопка управления; 8 - сигнальная лампа; 9 - корпус котла; 10 - крышка; 11 - манометр; 12 - наполнительная воронка; 13 двойной предохранительный клапан; 14 - цапфа; 15 - маховик механизма опрокидывания котпа

Котел пищеварочный электрический секционный модулированный КПЭСМ-60М (рис. 9.4) по конструкции, принципу работы и правилам эксплуатации аналогичен котлу КПЭСМ-60, но отличается от него тем, что кожух варочного сосуда имеет цилиндрическую форму.

Варочный сосуд котла установлен с помощью цапф на двух тумбах, которые закреплены на раме, имеющей регулируемые по высоте пожки.

В правой тумбе размешен механизм опрокидывания варочного сосуда, состоящий из червячного сектора и маховика с ручкой. На левой тумбе находится панель с электроаппаратурой, а на лицевую сторону выведены сигнальные лампы, переключатель режима и кнопки пуска и останова котла.
136

Котел снабжен автоматикой регулирования, обеспечивающей ^ва режима варки. Контрольно-регулирующая арматура, ее устройство и принцип работы, а также правила эксплуатации котла КПЭСМ-60М аналогичны таковым котла КПЭ-100.

Технические характеристики котла КПЭСМ-6ОМ

Полезная вместимость, л 60
Мощность, кВт 9,45
Напряжение, В $380 / 220$
Продолжительность разогрева, мин 45
Рабочее давление пара в рубашке, кгс/см² $0,1 \ldots 0,4$
Габаритные размеры, мм:
мина 1050
ширина 910
высота 1250
Масса, кт 170
Пицеварочньй котел электрический КЭ-250 (рис. 9.5) и кот-лы КЭ-100, КЭ-160 имеют аналогичную конструкцию и принципработы, но отличаются друг от друга габаритными размерами, по-

Рис. 9.5. Пищеварочный котел электрический КЭ-250: α - вид спереди; б - вид слева: 1 - прижимной бопт; 2 - клапан избыточного давления пара в варочном сосуде; З- крышка; 4 - водопроводный кран; 5-мановакуумметр; 6 - переключатель; 7 - облицовка; 8 - ТЭНы; 9 спивной кран; 10 - заливочная воронка; 11 - предохранительный клапан; 12 - отражатель; 13 - накидной рычаг; 14 - сетка; 15 - кран уровня; 16 репе давпения; 17 - парогенератор; 18 - основание; 19 - теплоизоляция; 2O- варочный сосуд

лезной вместимостью варочного сосуда и мощностью ТЭНов (табл. 9.3). Главная особенность эксшлуатации котлов типа КЭ заключается в том, что варка продуктов в таких котлах может осуществляться в функциональных емкостях. Поэтому для заг'рузки и выгрузки продуктов, уложенных на кассету, используют подъемные тележки.

Принцип работы таких котлов заключается в следующем: обрабатываемый продукт укладывают в перфорированные емкости и устанавливают в кассету по направляющим уголкам. Затем с помощью тележки онускают кассету в варочный сосуд котла. Процесс варки продуктов происходит так же, как и в котле КПЭ100.

После окончания варки с помощью подъемной передвижной тележки (рис. 9.6) производят выемку кассеты из варочного сосуда. Для этого откючают котел от электросети и снимают давление в варочном сосуде, поворачивая ручку клапана на крышке по часовой стрелке. Затем, открыв винты-зажимы и осторожно сняв

Табпица 9.3. Технические характеристики котлов типа КЭ

Параметр	Марка котла		
	KЭ-100	KЭ-160	KЭ-250
Полезная вместимость, л	100	160	250
Мощность, кВт	18,9	24	30
Напряжение, В	380		
Продолжительность разогрева, мин	40	50	55
давление пара в рубашке котла, $\mathrm{KIC} / \mathrm{CM}^{2}$	0,1..0,45		
Количество перфорированыых вкладышей	2	4	6
Количество кассет	1	2	3
Габаритные размеры, мм: длина ширина высота	$\begin{aligned} & 800 \\ & 800 \\ & 850 \end{aligned}$	$\begin{gathered} 1200 \\ 800 \\ 850 \end{gathered}$	$\begin{gathered} 1500 \\ 800 \\ 850 \end{gathered}$
Macca, кг	160	190	220

138

Рис. 9.6. Схема загрузки кассет в котел типа КЭ с помощью тепежки:
1 - котеп типа КЭ; 2 - крышка котпа; 3 - кассета; 4 - захваты; 5 - пантограф; 6 - поручни; 7 каретка; 8 - редуктор; 9 - рукоятка; 10 - каркас: 11 - направляющие; 12 - рама; 13 - тормозное устройство; 14 - копесо тележки

крышку котла, подкатывают к нему тележку. Фиксируют кассету захватами, вынимают ее из варочного сосуда, подняв над котлом в крайнее верхнее положение, и оставляют в таком положении несколько минут для стекания бульона. Откатив тележку, выгружают продукцию.

Котел имеет три режима работы, а также устройство для автоматического переливания бульона и жидкостей в функциональные емкости и другую тару.

Каждый котел комплектуется кассетами и перфорированными вкладышами.

Контрольно-измерительная аппаратура, ее устройство и принцип работы котлов типа КЭ аналогичны котлу типа КПЭ-100.

Устройство электрическое варочное УЭВ-40 (рис. 9.7) предназначено для варки заправочных супов, вторых и третьих блюд, гарниров, тушения овощей, а также транспортирования готовых блюд на линию раздачи, сохранения их в горячем состоянии и раздачи потребителю.

Технические характеристики электрического варочного устройства УЭВ-40

Полезная вместимость, л 40
Мощность, кВт 24
Напряжение, В 380
Рабочсе давление пара, кгс/см ${ }^{2}$ 0,45
Продолжительность закипания содержимого варочного котла, мин 42

B

Рис. 9.7. Устройство электрическое варочное УЭВ-60:
а - вид спереди; б - вид сбоку; в - вид сверху: 1 - направляющие; 2 - передвижной котеп КП-60; З - манометр; 4 - предохранительный клапан; 5 кран; 6 - сигнальная лампа; 7 - ручка перекпючателя режимов; 8 - ТЭНы; 9 - парогенератор; 10 - зажим заземления; 11 - заливная воронка; 12 стыковочный рычаг; 13 - верхняя часть парозапорного устройства: 14 - кран уровня воды; 15 - датчик эащиты от «сухого хода»; 16 - нижняя часть парозапорного устройства; 17 - крышка; 18 и 19 - соответственнд боковая и задняя тумбы; 20 - прокладка
Габаритные размеры, мм длина 600
ширина 800
высота 850
Macca, кт 160

Устройство электрическое варочное УЭВ-40 состоит из парогенератора и двух тумб: задней 19 и боковой 18. В парогенераторе установлены три ТЭНа 8, датчик защиты от "сухого хода» 15 , кран уровня воды 14. На корпусе парогенератора расположена нижняя часть парозапорного устройства. На столе задней тумбы совместно с манометром 3 и предохранительным клапаном 4 находится воронка 11 для заполнения парогенератора дистиллированной или кипяченой водой. Установлен также кран 5 для заполнения водой варочного сосуда котла.

Передвижной котел состоит из варочного сосуда, помещенного на подвижную тележку. С наружной стороны варочного сосуда находится пароводяная рубашка, на дне которой установлена верхняя часть парозапорного устройства. Между пароводяной рубашкой и облицовкой уложена теплоизоляция 23. Сверху варочиый сосуд закрывается крышкой.

В тумбах установлены панели с электроаппаратурой. На передней панели парогенератора находится ручка переключателя режима работы варочного устройства.

На столе боковой тумбы расположен рычаг для стыковки и расстыковки верхней и нижней частей парозапорного устройства.

При въезде котла в тележку по направляющим до упора производится соединение котла и парогенератора с помощью нижней и верхней частей парозапорного устройства. Для этого перемещают стыковочный рычаг движением «на себя». Аия отсоединения котла от парогенератора следует нажать на кнопку расстыковочного рычага и движением "от себя» установить его в крайнее положение.

Варочное устройство УЭВ-40 отличается от УЭВ-60 только высотой варочного сосуда котла.

Устройство и принцип работы аппаратуры, установленной на котле, а также правила эксплуатации аналогичны работе котла КПЭ-100.

Автоклав электрический АЭ-1 (рис. 9.8) предназначен для варки блюд. требующих длительной тепловой обработки. Однако автоклавы не нашли широкого применения на предприятиях общественного питания. В настоящее время отечественная промышленность выпускает только стационарный неопрокидывающийся

Рис. 9.8. Автоклав электрический АЭ-1:
1 - парогенератор; 2. 17 - фланцы; З - ТЭНы; 4 - крышка парогенератора; 5 - основание; 6 - сетка; 7 - сливной кран; 8 - теплоизоляция; 9 - загрузочная корэина; 10 - варочный сосуд; 11 - ручка корзины; 12 - резиновая прокладка крышки: 13 - откидной болт: 14 - кран продувки; 15 - крышка; 16 - шарнир; 18 - шток; 19 - облицовка; 20 - противовес; 21 - корпус; 22 - пружина; 23 - кронштейн

электрический автоклав. Автоклав - это герметично закрывающийся варочный сосуд, в котором приготовление пищи осуществляется под давлением, превышающим атмосферное.

Автоклав по конструкции аналогичен пищеварочному котлу, но отличается от него тем, что процесс приготовления пищи происходит при давлении $147 \ldots 245$ Па/см ${ }^{2}\left(1,5 \ldots 2,5 \mathrm{krc} / \mathrm{cm}^{2}\right)$ и температуре варки $1200 \ldots 1400^{\circ} \mathrm{C}$, за счет чего происходит резкое сокращение продолжительности варки продуктов в 1,5... 2 раза.

Автоклав АЭ-1 состоит из варочного герметично закрываемого сосуда, изготовленного из нержавеюццей стали, и наружного стального корпуса 21, который имеет теплоизоляцию 8 и облицовку 19.

Пространство между варочным сосудом и стальным корпусом образует пароводяную рубашку, внизу которой расположены парогенератор с тремя ТЭНами и электрод защиты от «сухого хода», а также контрольный кран проверки уровня воды. Сверху варочный сосуд закрывается двустенной крышкой 15 , на которой установлены противовес 20 и прокладка 12, изготовленная из термостойкой пищевой резины. Плотное закрытие крышки осуществляется специальным откидным болтом 13. На крышке установлен кран продувки 14 с патрубком, который в начале работы автоклава служит для выпуска воздуха из варочного сосуда, а в процессе варки проАуктов - избыточного давления пара. Варочный сосуд имеет сливпой кран 7 и загрузочную корзину 9 . На автоклаве установлены контрольно-измерительные и предохранительные приборы:

- электроконтактный манометр, который служит для установки минимального и максимального давлений при автоматическом режимс варки продуктов;
- предохранительный двойной клапан, который снижает максимальное давление в пароводяной рубашке и открывается, когда там создается пониженное давление после отключения автоклава от электросети;
- наполнительная воронка и кран служат для заливания дистиллированной или кипяченой воды в парогепсратор, а также в начале работы автоклава для выпуска воздуха из пароводяной рубашки.

Аля подачи воды в автоклав установлены трубопроводы холодного и горячего водоснабжения. Станция управления имеет переключатель режима работы, сигнальные лампы, кнопки вкюючения и выключения автоклава.

В связи с тем, что в автоклаве давление в варочном сосуде и пароводяной рубашке очень высокое, то для обеспечения прочности варочного сосуда, наружного котла, крышки и парогенератора их стенки изготовляют значительно толще и прочнее, чем в пищеварочных котлах.

К недостаткам автоклавов относятся повышенная металлоемкость конструкции и снижение качества готовой продукции. При повышении давления и температуры интенсивно протекает реакция гидролиза, происходят эмульгирование жиров и другие нежелатсльные процессы, возникает необходимость периодических испытаний, так как сосуд работает под давлением.

Все перечисленные недостатки ограничивают применение автоклавов, поэтому они мало используются.

Технические характеристики автоклава электрического АЭ-1

Полезная вместимость, л 60
Мощность нагревательных элементов, кВт 10,8
Напряжение, В 380
Продолжительность разогрева, мин 45
Рабочее давление в пароводяной рубашке, $П а /$ см 2 (кгс/см ${ }^{2}$) $24,5(2,5)$
Габаритные размеры, мм:
Аиаметр 880
высота 1245
Macca, кг 235

Правила эксплуатации автоклава электрического АЭ-1. Перед началом работы лица, за которыми закреплен автоклав, проверяют его санитарное и техническое состояние.

С помощью крана уровня воды проверяют наличие ее в парогенераторе и в случае недостаточного количества заливают через наполнительную воронку только дистиллированную или кипяченую воду, которая должна быть отстоянной в течение 24 ч. При этом кран наполнительной воронки оставляют открытым для выхода воздуха из пароводяной рубашки во время разогрева автоклава.

Затем на электроконтактном манометре специальным ключом устанавливают стрелки минимального и максимального автоматического давления режима варки продуктов в варочном сосуде автоклава.

Проверяют состояние предохранительных клапанов, уплотнительной прокладки крышки варочного сосуда и открывают продувочный кран. При загрузке продуктами контролируют уровень заполнения, который должен быть ниже края варочного сосуда на 10... 12 см. Закрывать крышку откидными болтами нужно попарно в несколько приемов во избежание ее перекосов.

При включении тумблерами автоклава в работу загорается контрольная лампа "Сильный нагрев». Через 2... 3 мин, как только из наполнительной воронки и продувочного крана пойдет пар, кран нужно закрыть.

При полном разогреве, когда давление пароводяной рубашки достигнет верхнего предела, электроконтактный манометр автоматически переключит автоклав на слабый нагрев. Варка продуктов происходит в автоматическом режиме.

Запрещается оставлять автоклав без надзора и допускать повышение давления в нем более 24,5 Па/см ${ }^{2}\left(2,5 \mathrm{krc} / \mathrm{cm}^{2}\right)$.

После окончания работы автоклав отключают и через 5... 10 мин открывают вентиль "Выпуск пара» и ждут пока стрелка на манометре не займет положение «0». Затем открывают продувочный кран на крышке для выпуска пара из варочного сосуда и осторожно снимают крышку.

После выгрузки продуктов проводят тщательную санитарную обработку автоклава и оставляют его для просушивания открытым.

лица, работающие с автоклавом, должны контролировать и знать его устройство, правила эксплуатации и технику безопасности.

Работники Роспотребнадзора ежемесячно проверяют техническое состояние и работу автоклава.

9.3. ГАЗОВЫЕ ПИЩЕВАРОЧНЫЕ КОТЛЫ

Газовые пищеварочные котлы используют для приготовления первых, вторых и третьих блюд. В настоящее время отечественная промышленность выпускает серийно стационарные (неопрокидывающиеся) котлы типа КПГ-160, КПГ-250, опрокидывающиеся КПГ-40М, КПГ-60М и опрокидывающийся секционный модулированный КПГСМ-60 (табл. 9.4).

Все газовые пищеварочные котлы имеют приборы газовой автоматики безопасности и регулирования.

Котел пищеварочный газовый КПГ-160 (рис. 9.9) и котел КПГ-250 имеют одинаковую конструкцию, но различаются вместимостью варочного сосуда, габаритными размерами и массой.

Котел КПГ-160 состоит из внутреннего варочного сосуда 11 и наружного котла 12. Пространство между ними образует пароводяную рубашку. Наружный котел имеет теплоизоляцию 13 и покрыт облицовкой. В нижней части наружного котла расположен парогенератор 15, который заполняется через наполнительную воронку 4 дистимированной или кипяченой водой. Уровень воды в парогенераторе контролируется контрольным краном, установленным на внешней стороне наружного котла.

Под парогенератором расположено газогорелочное устройство, состоящее из трех трубчатых горелок 17 , которые нагревают воду в парогенераторе до кипения.

Сверху котел закрывается двустенной крышкой 7 с противовесом, закрепленным на валу-шарнире. На крышке установлен кла-

Таблица 9.4. Технические характеристики газовых пищеварочных котлов

Параметр	Марка котла			
	КПГ-40М	KПГ-60M	КПГ-160	KпГ-250
Полезная вместимость, л	40	60	160	250
Продолжительность закипания, мин	50	55	60	60
Рабочее давление пара в рубашке, Па/см ${ }^{2}$	49			
Габаритные размеры, мм				
длина	935	935	1130	1130
ширина	1025	1025	1025	1025
высота	1020	1140	1267	1442
Macca, кr	130	140	380	490

Рис. 9.9. Котел пищеварочный газовый КПГ-160:
a -- общий вид; б - вид сбоку: 1 - блок автоматики; 2 - дымовой патрубок; З- прөдохранительный клапан; 4 - наполнительная воронка; 5 - манометр; 6 - клапан-турбинка; 7 - крышка; 8 - откидной болт; 9 - кран уровня; 10 сливной кран; 11 - варочный сосуд; 12 - корпус; 13 - теплоизопяция; 14 пароводяная рубашка; 15 - парогенератор; 16 - постамент; 17 - гвэовая горелка

пан-турбинка 6 с пароотводной трубкой. Плотное прилегание крышки к корпусу варочного сосуда обеспечивают термостойкая резиновая прокладка и откидные болты 8 крепления.

На газопроводе перед горелкой находятся фильтр и вентиль горелки, а также приборы газовой автоматики электромагнитного действия.

Аля разжигания запальной свечи имеется специальный люк, который служит также для контроля за работой всех горелок котла.
$\Delta \wedge я$ контроля давления пара и поддержания температурного режима в пароводяной рубашке котла установлены электроконтактный манометр и двойной предохранительный клапан.

K котлу подведены трубопроводы холодной и горячей воды.
Котел пищеварочный газовый КПГ-40М (рис. 9.10) по конструкции аналогичен котлу КПГ-60М и имеет принципиально одинаковое устройство, но отличается вместимостью варочного сосуда и массой.

Котел состоит из внутреннего варочного сосуда 1 и наружного корпуса 2, установленного на литой чугунной вилкообразной станине с помощью двух цапф 6, которые обеспечивают опрокидывание с помощью червячного редуктора.

Под парогенератором находится газогорелочная камсра, в которой установлена инжекторная горелка 8. Подачу первичного воздуха к горелке производят регулятором, выполненным в виде шайбы. Вторичный воздух к горелкам поступает через кольцевой зазор в основании котла.

Продукты горения из газогорелочной камеры отводятся в дымоход.

На котле КГТГ-40М установлена контрольно-предохранительная арматура: электроконтактный манометр 10, двойной предохранительный клапан, воздушный клапан, кран уровня, наполнительная воронка 11, а также блок газовой автоматики 14 регулирования и безопасности (2АРБ).

Котел пищеварочный газовый секционный модулированный КПГСМ-60 (рис. 9.11) имеет вид ирямоугольника. Котел состоит из внутреннего варочного сосуда цилиндрической формы и наружного корпуса, который покрыт теплоизоляцией и облицован плоскими эмалированными панелями. Пароводяная рубашка обогревается газовой горелкой с кольцевой насадкой, установленной в специальном цилиндрическом кожухе вместе с запальником.

Дяя подсоса вторичного воздуха в днище топочной камеры имеются специальные отверстия.

Рис. 9.10. Котел пищеварочный газовый КПГ-40М:
а - вид сбоку; б - вид спереди: 1 - варочный сосуд; 2 - наружный корпус. З- теплоизоляция; 4- пароводяная рубашкв; 5- парогенератор; 6 - цапфа; 7 - постамент; 8 - газовая горелкв; 9 - поворотный кран; 10 - манометр; 11 - напопнительная воронка; 12 - кран уровня; 13 - дверца; 14 - блок газовой автоматики

Крышка котла одностенная, крепится пружинными держателями и закрывается двумя зажимами.

В правой части котла установлены опрокидывающее устройство и газопровод с блоком газовой автоматики, в левой части трубопроводы горячей и холодной воды. В зддней части котла находится вертикальный дымоход, отводящий продукты сгорания из топочной камеры в атмосферу.

На котле находится контрольно-измерительная аппаратура, аналогичная установленной на котле КПГ-60М, а также газовая автоматика регулирования и безопасности.

Правила эксплуатации котлов пищеварочных газовых. Аля безопасности и удобства обслуживания газогорелочного устройства и автоматики котел устанавливают на специальном несгораемом постаменте. Перед работой проветривают помещение, проверяют положение газового вентиля на коллекторе и только потом открывают газовый вентиль на газопроводе перед котлом. Затем с помощью контрольного крана проверяют уровень воды в парогенераторе и при необходимости добавляют

Рис. 9.11. Котел пищеварочный газовый секционный модулированный КПГСМ-6О:
1 - дымоход; 2 - наружный корпус; 3 - варочный сосуд; 4 - наполнительная воронка с краном, 5 - крышка котла; 6 - кран уровня; 7 - маховик; 8 дверца; 9 - ножка; 10 - рама; 11 - патрубок; 12 - кожух: 13 - горелка; 14 - топка; 15 - гаэоход; 16 - парогенератор; 17 - облицовка

в него через наполнителыную воронку дистиллированную или киняченую воду. После этого проверяют электроконтактный манометр, клапан-турбинку, двойной предохранительный клапан. Кла-пан-турбинку при проверке поднимают за кольцо, а днойной предохранительный клапан - посредством специального рычага, поднимающего верхний паровой клапан.

Датчики и блок газовой автоматики должны быть опломбированы.

После проведения проверки санитарно-технического состояния котел заполняют продуктами и водой и закрывают крышкой, которую закрепляют откидными болтами. Открывают воздушный клапан или кран наполнительной воронки, затем открывают заслонку смотрового окна, подносят зажженную спичку к запальной свете, нажимают на пусковую кнопку автоматики и удерживают ее в течение 40 с. Отпустив кнопку и убедившись в том, что запальная свеча горит, открывают кран горелки, которая зажигается от запальной свечи. Как только через воздушный клапан или, если его нет, через наполнительную воронку начинает выходить

Неисправность	Причина	Способ устранения
Автоматическое отключение подачи газа при работе котла	1. Отсутствие тяги. 2. Засорение отверстий запальника. 3. Повреждение линии автоматики. 4. Отрыв пламеии от горелки	1. Восстановить тягу. 2. Прочистить отверстия запальника. 3. Провести ремонт или замену линии автоматики. 4. Отрегулировать подачу воздуха
Котел слабо нагревается	1. Не продуналась пароводяная руӧашка. 2. В парогенератор залита лишняя вода	1. Продуть пароводяную рубашку котла. 2. Установить правильный уровень воды
Усиленный выход пара через клапантурбинку	Засорение пароотвода	Прочистить и промыть водой пароотвод
При затянутых откидных болтах крышка не удерживает пар	Неисправна резиновая прокладка крышки	Заменить прокладку

150

плотная струя пара, клапан закрывают. Продолжительность разогрева котла до рабочего режима составляет 50 ... 60 мин. При давлении более 0,5 кПа котел автоматически с помощью электрокон'тактного манометра переходит на режим «тихого кинения». По окончании варки закрывают регулятор первичного воздуха, кран горелки и кран на газопроводе перед котлом.

После разгрузки котел промывают горячей водой, вытирают сухой тканью и оставляют открытым для просушивания.

В процессе эксплуатации котла не рекомендуется попадание жидкости на блок автоматики безопасности и регулирования.

Техшическое обслуживание шищеварочных газовых котлов и блока автоматики проводит мастер, обслуживающий предприятие общественного питания.

Неправильная эксплуатация пищеварочных газовых котлов может привести к пожарам или отравлениям, поэтому работники, обслуживающие такие котлн, должны соблюдать правила эксплуатации и требования техники безопасности.

К работе с пищеварочными газовыми котлами допускаются работники, прошедшие обучение по устройству, обслуживанию и технике безопасности, а также утвержденные приказом по предприятию об обслуживании данного оборудования.

Возможные неисправности, возникающие при эксплуатации пищеварочных газовых котлов, и способы их устранения триведены в табл. 9.5.

9.4. ПАРОВЫЕ ПИЩЕВАРОЧНЫЕ КОТЛІЫ

Паровые пищеварочные котлы устанавливаются на тех предириятиях общественного питания, где имеется возможность получать иар с заводской котельной или теплоэлектроцентрали (ТЭЦ). Пар, полученный в котельной установке, по паропроводу подается в паровую рубашку иищеварочного котла, где охлаждается, кондсисируется и, иройдя через конденсатоотводчик и конденсатопровод, вновь поступает в котельную для повторного нагрева.

В настоящее время на предприятиях общественного питания для варки бульонов, соусов, каш и овощей исиользуют пищеварочные паровые котлы КПП-60, КПП-100, КПП-160, КПП-250. Все лти котлы имеют одинаковое конструктивное исполнение, но различаются габаритными размерами, вместимостью варочного сосула и массой (табл. 9.6).

Котел пищеварочный паровой КПП-250 (рис. 9.12) имеет варочный сосуд, наружный корпус, облицовку и контрольно-измерительную арматуру.

Пространство между варочным сосудом и наружным корпусом образует паровую рубашку, в которую из паровой магистрали подается пар. Между наружным корпусом и облицовкой размещена теплоизоляция для сохранения теплоты в котле. Сверху котел закрывается двустенной крышкой 2, снабженной противовесом. Плотность прилегания крышки к котлу обеспечивает специальная прокладка 4, выполненная из теплостойкой пищевой резины и двух откидных болтов-зажимов 5 .

Аля регулирования количества пара, подаваемого в рубашку, и интенсивности нагрева на паропроводе установлен парозапорный вентиль 7.

Конденсат, образовавшийся в паровой рубашке, поступает в конденсатоотводчик 8, а затем в котельную для повторного нагрева.

Котел КПП-250 снабжен трубопроводами холодной и горячей воды и поворотной трубкой крана смесителя.

На котле установлена контрольно-измерительная арматура: клапан-турбинка 3, манометр 9, двойной предохранительный клапан 6 , продувочный и сливной краны, воздушный клапан.

Кхапан-турбинка, установленная на верхней части крышки котла, служит для предупреждения образования избыточного давления в варочном сосуде.

Параметр	Марка котла			
	КПП-60	Kпп]-100	кп7П-160	КПП-250
Полезная вместимость, л	60	100	160	250
Продолжителыность разогрева, мин	19	20	26	35
Габаритные размеры, MM: длина ширина высота	$\begin{gathered} 985 \\ 600 \\ 1100 \end{gathered}$	$\begin{gathered} 950 \\ 1100 \\ 1200 \end{gathered}$	$\begin{aligned} & 865 \\ & 1050 \\ & 1200 \end{aligned}$	$\begin{aligned} & 1030 \\ & 1150 \\ & 1200 \end{aligned}$
Macca, ki	100	200	265	290

a

σ

Рис. 9.12. Котел пищеварочный паровой КПП-250:

- вид в разрезе; б - общий вид: 1 - перекидной кран; 2 - крышка; З -кпапан-турбинка; 4 - реэиновая прокладка; 5 - откидной болт-зажим; 6 двойной предохранительный клапан; 7 - вентиль; 8 - конденсатоотводчик; 9 - манометр; 10 - рычаг противовеса

Манометр предназначен для контроля давления пара в рубашке котла.

Авойной предохранительный клапан необходим для защиты рубашки котла от высокого давления, а также исключает возможность образования в ней разреженного давления. Двойной клапан имеет специальный рычаг, с помощью которого можно открывать верхний клапан для контроля его работы и чистки паром.

Сливной кран используют для сливания из варочного сосуда жидких продуктов питания.

Котел пищеварочный паровой КПП-60 (рис. 9.13) состоит из внутреннего варочного сосуда 4 циииндрической формы и наружного корпуса 6 , покрытого теплоизоляцией 3 и облицовкой 2 .

Между варочным сосудом и корпусом расположена паровая рубашка 7, в которую подается пар по паропроводу 16. Котел ус-

тановлен па литой чугунной вилкообразной станине 1 посредством цапф 5, обеспечивающих опрокидывание его с помощью маховика 13 и червячного редуктора.

Пар поступает в паровую рубашку по паропроводу через правую цапфу.

Образующийся конденсат отводится через конденсатоотводчик 15 , расположенный в нижней части котла.

На котле установлены предохранительные приборы и арматура: манометр 11, предохранительный 12 и воздушный клапаны, продувочный кран 14, вентили, а также трубопровод холодного водоснабжения 17 с поворотным краном.

Принцип работы предохранительных приборов котла КПП-60, а также правила эксплуатации, техпики безопасности аналогичны котлу КПП-250.

Правила эксплуатации пищеварочных паровых котлов. При эксплуатации пицеварочных паровых котлов необходимо соблюдать правила техники безопасности.

Рис. 9.13. Котел пищеварочный паровой КПП-60:
1 - вилкообразная станина; 2 - облицовкя: 3 - теплоизоляция; 4 - варочный сосуд; 5-цапфа: 6 - наружный корпус; 7 - паровая рубашкв; 8 - поворотный кран; 9 - крышка; 10 - клапан; 11 - манометр; 12 - двойной предохранительный клапан; 13 - маховик; 14 - продувочный кран: 15 конденсатоотводчик: 16 - паропровод: 17 - трубопровод холодного водоснабжения

Перед началом работы нужно проверить санитарное и техническое состояние котла, особое внимание уделить исправности клапана-турбинки и двойного предохранительного клапана.

Проверенный котел загружают продуктами, закрывают крышкой и закрепляют ее откидными болтами. Потом на $1 / 4$ оборота открывают воздушный клапан и паровой вентиль на паропроводе перед котлом. После появления пара из воздушного клапана его закрывают, паровой вентиль открывают полностью.

В паровой рубашке котла пар, соприкасаясь со стенками варочного сосуда, конденсируется. Освобождающаяся нри этом тепловая энергия расходуется на нагрев варочного сосуда и загруженных в него продуктов.

В процессе работы котла парозаиорным вентилем контролируют подачу шара так, чтобы можно было обеспечить режим спокойного кишения продуктов.

После окончания варки продуктов закрывают парозапорный нентиль и через 5 ... 7 мин можно осторожно открыть крышку котла, предварительно убедившись в отсутствии избыточного давления в варочном сосуде при помощи поднятия за кольцо клапанатурбинки.

Затем котел разгружают, проводят сатитарную обработку и оставляют его для просупивания с открытой крышкой.

Главным условием безопасной работы на паровом пищеварочном котле является своевременное удаление из него конденсата, который может явиться причиной гидравлического удара. Поэтому за работой конденсационного клапана устанавливают постоянное наблюдение.

Запрещается поддерживать в котле интенсивное кипение проАуктов, так как происходят перерасход пара и опасное повышение давления в варочном сосуде. Правильная эксплуатация, а также своевременное проведение санитарного и технического обслуживания исключают травмы на производстве и увеличивают срок службы котла.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как регулируется температура в котле КПЭ-100?
2. Какую воду наливают в парогенератор и почему?
3. В чем отличие стационарных котпов от опрокидывающихся?
4. Каково назначение манометра, установленного на котле КПГ-60?
5. Назовите режимы работы котла КЭ-250.
6. В чем достоинства электрического обогрева?
7. Назовите требования техники безопасности при работе с электрокотлами.
8. Объясните принцип работы электроконтактного манометра, используемого в электрокотлах.
9. Как и в каких котлах производится варка продуктов в функциональных емкостях?
10. Опишите контрольно-измерительные приборы и принцип их работы.
11. Как подготовить газовый пищеварочный котел к работе?
12. В чем причина гидравлического удара в паровых котпах?

Глaba 10

ПАРОВАРОЧНЫЕ АППАРАТЫ

10.1. КЛАССИФИКАЦИЯ ПАРОВАРОЧНЫХ АППАРАТОВ

Пароварочные аппараты (шкафы) предназначены для варки продуктов на пару. В этих аппаратах обогрев продуктов осуществляется «острым паром», т.е. путем непосредственного соприкосновения с продуктами насыщенного пара, который при этом конденсируется и отдает теплоту парообразования обрабатываемому продукту.

При этом способе тепловой обработки по сравнению с варкой в воде значительно снижается выщелачивание минеральных веществ из продуктов, что способствует сохранению их пищевой ценности. Продукты, приготовленные на пару, получаются более ароматными, вкусными и сочными. Поэтому варку на пару применяют для приготовления продуктов диетического и детского питания.

Конструктивно различают пароварочные шкафы с парогенератором и без него, а также работающие при атмосферном или избыточном давлении. Использование избыточного давления сокращает продолжительность варки пищевых продуктов и повышает производйтельность аппаратов, но в то же время усложняет его конструкцию и эксплуатацию. Вот почему в настоящее время серийно выпускаются только электрические пароварочные аппараты с собственным парогенератором АПЭСМ-1 и АПЭСМ-2, работающие при атмосферном давлении. Эти аппараты имеют аналогичное устройство и различаются только количеством секций. Аппарат АПЭСМ-1 имеет одну секцию, а аппарат АПЭСМ-2 Аве секции. В настоящее время разработаны и внедряются на предприятиях общественного питания новые конструкции паровдрочных шкафов АПЭ-0,23А и АПЭ-0,23А-0,1, которые рассчита-

ны для варки продуктов на пару в функциональных емкостях. Емкости могут быть перфорированные (для кучшего контакта пара с обрабатываемыми продуктами) и неперфорированные.

Все пароварочные аппараты работают от трехфазной сети переменного тока 380 В, 50 Гц.

10.2. АППАРАТЫ ПАРОВАРОЧНЫЕ ЭЛЕКТРИЧЕСКИЕ

Annapam пароварочный электрический секционный моgулированный АПЭСМ-4 (рис. 10.1) предназначен для варки на пару́ мяса, рыбы, овощей, а также для подогрева разных кулинарных изделий. На предприятиях общественного питания его используют самостоятельно или в составе технологических линий.

> Технические характеристики аппарата пароварочного секционного модупированного АПЭСМ-4
Вместимость варочных камер, м ${ }^{3}$ 0,37
Произволительность, кг/ч 75
Мощность, кВт 10
Напряжение, B $380 / 220$
Прололжительнос'ь разогревс, мин 20
Срелняя температура в камере, ${ }^{\circ} \mathrm{C}$ 95
Габаритные размеры, мм:
длина 830
пирина 800
высота 1830
Macca, кг 240

Аппарат АПЭСМ-4 представляет собой шкаф, состоящий из двух секций и подставки. В каждой секции есть две самостоятельные варочные камеры 2 и 3, выполненные из нержавеющей стали. Секции и подставка облицованы стальными листами, покрытыми эмдлью белого цвета.

Внутри варочных камер устанавливаются сплошные 4 и перфорированные 5 противни для продуктов, варка которых произвоАится паром, посгупающим по трубоюроводу из парогенератора 13. Варочные камеры закрываются дверцами, снабженными ручками-запорами.

В основании шкафа расположены парогенератор с ТЭНами 12 и питательный бачок с поплавковым клапаном, который контролирует уровень воды в парогенераторе.
158

Рис. 10.1. Аппарат пароварочный электрический секционный модулированный АПЭСМ-4:
a - схема вида спереди; б - схема вида сбоку: 1 - секция; 2 и 3 - варочные камеры; 4 и 5 - противни; 6 - сигнапьная лампа «Нет воды»; 7 - сигнальная лампа "Нагрев»; 8 - выключатель; 9 - переключатепь; 10 - реле давления; 11 - паровой кран; 12 - ТЭНы; 13 - парогенератор

Нагрев воды в парогенераторе осуществляется ТЭНами, мощность которых регулируется с помощью пакетного переключателя в соотношении $4: 3: 2: 1$. Регулирование происходит параллельным включением или всех четырех ТЭНов (сильный нагрев), или трех или двух ТЭНов (средний нагрев), или одного ТЭНа (слабый нагрев). Защита ТЭНов от "сухого хода" производится посредством реле давления 10. Подача пара в варочные камеры шкафа регулируется шибером. Образующийся конденсат собирается на дне камеры и отводится по трубопроводу в канализацию.

Блок управления установлен в подставку, а ручки регулироваиия, две сигнальные лампы 6 и 7, ручка переключателя 9 и кнопки "Пуск" и "Стоп" выведены на лицевую панель.

a
Рис. 10.2. Аппарат пароварочный электрический АПЭ-О,2ЗА:
а - общий вид; $б$ - вид по А-А; в - вид по Б: 1 - рама; 2, 5 и 10 - облицовки: З - дверца: 4 - вентипяционный короб; 6 - сигнальная лампа; 7 - ручка переключателя; 8 - реле температуры; 9 - варочная камера; 11 - кассета; 12 сборник конденсәта; 13 - питательная коробка; 14 - реле давления; 15 - парогенератор; 16 - конденсатопровод; 17 и 18 - емкости; 19 - панель с электроаппаратурой; 20 - блок зажимов; 21 - болт дпя подкпючения заземления

Конструкция пароварочного аппарата допускает установку его в технологических линиях вместе с другим моделированным оборудованием.

Anпарат пароварочный электрический АПЭ-0.23А (АПЭ$0,23 A-0,1$) (рис. 10.2) предназначен для варки на пару при атмосферном давлении овощей, рыбы, мяса, разных кулинарных изделий в функциональных и других емкостях на предприятиях общественного питания.

Технические характеристики аппарата пароварочного электрического АПЭ-0,2ЗА

Вместимость варочных камер, м ${ }^{3}$ 0,23
Производительность, кг/ч 50
Мощность, кВт 7.5
Напряжение, В 380/220
Продолжительность разогрева, мин 18
Средняя температура в камере, ${ }^{\circ} \mathrm{C}$ 95
Габаритные размеры, мм: длина 900
ширина 800
высота 1350
Macca, кг 160

160

Аппарат состоит из двух варочных камер 9, установленных на раме 1 и закрытых с лицевой стороны индивидуальными дверцами 3 с затяжным запором. Внутри варочных камер размещены кассеты 11 с функциональными емкостями 17 и 18 . Под варочными камерами установлен парогенератор 15. Занолнсние парогенератора водой производится из питательной коробки 13 , соединенной с водопроводом. Уровень воды в нитательной коробке регулируется поплавковым клапаном. Нагрев воды в нарогенераторе производится ТЭНами, которые защищены от «сухого хода» прибором реле давления 14, установленным на подводящем трубопроводе.

Вырабатываемый в парогенераторе пар по двум трубопроводам подается в варочные камеры. Образовавшийся в процессе варки конденсат стекает в сборник конденсата 12 и далее в канализацию. В нижней части аппарата размещена панель с электроаппаратурой. На облицовку 2 выведена ручка переключателя 7 и сигнальная лампа 6 желтого цвета, сигнализируюмцая о включении ТЭНов аппарата.

Каждый аппарат комплектуется функциональными емкосгями (2 шт.), крышками к ним (2 шт.), кассетами (2 шт.), противнями (8 шт.). В верхней части аппарата установлен короб с приточновытяжной вентиляцией.

Правила эксплуатации пароварочных электрических аппаратов. Все паровые аппараты работают под давлением, поэтому во избежание аварий и несчастных случаев при работе с ними необходимо соблюдать правила техники безопасности.

Аля ириведения аппарата в рабочсе состояние спачала открывают входной вентиль для заполнения парогенератора водой. Только после заполнения парогенератора водой до заданного уровня можно включать ТЭНы путем установки пакетного переключателя на максимальную мощность.

При достижении в рабочих камерах температуры $95 \ldots 96^{\circ} \mathrm{C}$ в секции загружают посуду с продуктами.

Овощи рекомендуется варить в перфорированных емкостях, мясо - в емкости со сплошным дном, помещая ее в верхнюю камеру; котлеты, сосиски, сардельки - в перфорированной емкости; рыбу и рыбное филе - как в перфориронанной, так и в неперфорированной емкости.

После окончания варки продуктов следует:

- выключить аппарат установкой пакетного переключателя в положение 0 ;
- слить воду из парогенератора и питательного бачка;
- вынуть емкости, формы, сетки, вымыть их и просушить;
- промыть каждую секцию горячей водой с мылом;
- удалить отложение накипи с парогенератора жесткой щеткой и обтереть его чистой тканью.

При санитарной обработке не рекомендуется использовать каустическую соду, так как она разрушает алюминий.

10.3. ЭЛЕКТРИЧЕСКИЕ КОФЕВАРКИ И СОСИСКОВАРКИ

На предприятиях общественного питания применяются электрокофеварки как тепловые аппараты, работающие от сети переменного тока напряжением 220 B . Они очень удобны и просты в эксплуатации.

Кофеварка электрическая КВЭ-7 (рис. 10.3) предназначена для приготовления натурального кофе и кофейных наиитков и является аппаратом периодического действия. Кофеварка КВЭ-7 состоит из варочного сосуда 8 и наружного корпуса 9, воздушный зазор между которыми служит теплоизоляцией. Нагревательный элемент закрытого типа расположен в литом чугунном диске, усгановленном на дне варочного сосуда. Внутри варочного сосуда установлено циркуляционно-перекидное устройство, состоящее из пароуловителя, фильтра 6 , отражателя 4 и циркуляциоиной трубки 7. В боковой стенке у дна внутреннего сосуда имеется патрубок с краном 1 для разбора кофе. Сверху кофеварка закрывается съемной крышкой 5.

Кофеварка снабжена терморегулятором 2, который автоматически ноддерживает нанитки в горячем состоянии при температуре $60 \ldots 80^{\circ} \mathrm{C}$. Корпус установлен на постаменте, на котором можно разместить поднос со стаканами, здесь же находится пакетный переключатель 12 , имеющий две степени нагрева: «Кипячение» и «Подогрев».

Кофеварку устанавливают на столе и подключают к электросети с помощью штепсельной розетки, имеющей контактное заземление.

Технические характеристики кофеварки электрической КВЭ-7

\qquad
I‘баритные размеры, мм:
длина 665
пирина 382
высота 470
Macca, кт 15

Принцип работы кофеварки КВЭ-7 основан на системе сообщающихся сосулов, заполненных жидкостью с разной объемной плотностью.

Аля приготовления кофе в сосуд наливают воду, закрывают его крышкой и включают нагрев. При закипании воды пузырьки пара, устремляясь вверх по циркуляционной трубке, увлекают за собой воду.

Вода ударяется об отражатель и равномерно омывает молотый кофе, экстрагирует из пего пищевые и ароматические вещества и через отверстия в фильтре стекает в нижнюю часть резервуара.

Правила эксплуатации электрокофеварки КВЭ-7. Перед начдлом работы в кофеварку заливают не менее 4 л (при малом количестве воды кипяток не циркулирует), закрывают ва-

Рис. 10.3. Кофеварка электрическая КВЭ-7:
1 - кран; 2 - терморегулятор; 3 - сигнальная пампа; 4-отражатель; 5 крышка; 6 - фильтр; 7 - циркулярная трубка; 8 - варочный сосуд; 9 - корпус: 10 - коппак; 11 - ТЭН; 12 - переключатель; 13 - стол

рочный сосуд крышкой и включают в электрическую сеть на полную мощность, устанавливая переключатель на режим «Кипение". За 5 ... 6 мин до закипания воды на фильтр ровным слоем насыпают молотый кофе и вновь закрывают крышку кофеварки.

Аля подержания напитка в горячем состоянии переключатель устанавливают в положение «Подогрев».

Перед повторным приготовлением напитка и после окончания работы кофеварку отключают от электросети, вынимают цирку-ляционно-перекидное устройство. Промывают его вместе с варочным сосудом и просушивают.

Электрокофеварку запрещается оставлять включенной без присмотра.

Сосисковарка настольная электрическая СНЭ-15 (рис. 10.4) иредназначена для варки сосисок и сарделек и помеержания их в горячем состоянии в процессе реализации.

Сосисковарка состоит из стального корпуса 1 с дном, установленным на ножках.

Каркас имеет два отверстия, в которые устанавливаются алюминиевые кастрюли с крышками. Кастрюли устанавливаются на электронагреватели 2 закрытого типа, смонтированные на дне корпуса сосисковарки. Степень нагрева регулируется двумя переключателями 6 и 7.

Одну из двух ванн можно использовать в качестве мармита. Аля этого в нее наливают небольшое количество воды, устанавливают перфорированный вкладыи 3, на который кладут готовые сосиски.

Технические характеристики сосисковарки настольной электрической СНЭ-15

Количество воды, заливаемой в ванну, л 10
Производительность, кг/ч 15
Продолжительность разог'рева до кипения, мин 22
Единовременная загрузка, кг 2,5
Мощность, кВт 4
Напряжение, В 220
Габаритные размеры, мм: длина 420
ширина 630
высота 275
Масса, кг 25

Правила эксплуатации сосисковарок электрических. Перед началом работы проверяют санитарное и техни-

Рис. 10.4. Сосисковарка настольная электрическая $\mathrm{CH}-15$:
1 - корпус; 2 - электронагреватели; 3 - перфорированный вкпадыш; 4 варочный сосуд; 5 - крышка; 6 и 7 - перекпючатели

ческое состояние сосисковарки. В варочный сосуд 4 наливают горячую воду и закрывают крышкой 5.

Не рекомендуется применять жесткую воду, так как это может привести к образованию накипи на ТЭНах и, следовательно, к быстрому их износу. Уровень воды в варочном сосуде должен быть не менее 13 см. С помощью переключателей ТЭНы включают на сильный нагрев, а после закипания воды - на слабый нагрев.

В кипящую воду загружают $2 \ldots 3$ кг сосисок и варят в течение 5... 7 мин. В процессе варки в варочный сосуд нужно доливать воду до уровня отметки (4 см ниже кромки кастрюли), так как недостаточное количество ее может привести к перегоранию ТЭНов из-за мдлой теплоотдачи.

После окончания работы отключают сосисковарку от сети и сливают воду. Затем проводят санитарную обработку, не допуская попадания воды на электронаюревательные элементы и электропроводку.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем заключается принцип работы пароварочного шкафа при атмосферном давпении?
2. В чем достоинство парового обогрева при варке продуктов в пароварочных шкафах?
3. Для чего служит реле давления в аппарате пароварочном эпектрическом секционном модулированном АПЭСМ-4?
4. Перечислите требования техники безопасности при варке продуктов на пару.
5. Опишите устройство и принцип работы кофеварки электрической КВЭ-7.
6. Для чего служит терморегупятор в кофеварке электрической КВЭ-7?
7. Какую воду необходимо наливать в сосисковарку и почему?
8. Опишите устройство и принцип работы АПЭСМ-4.

Глава 11

АППАРАТЫ ДЛЯ ЖАРЕНЬЯ И ВЫПЕЧКИ

11.1. СКОВОРОДЫ

Технологическая сущность процессов выпечки и жаренья проАуктов Заключается в доведении их до состояния готовности путем воздействия на них промежуточной среды (воздух, соусы, бульоны), нагретой на жарочных поверхностях или в рабочих объемах аппаратов до температуры $150 \ldots 350^{\circ} \mathrm{C}$.

К особой группе технологических процессов относятся жаренье и выпечка в поле СВЧ-токов и инфракрасных (ИК) излучений, гак как эти процессы отличаются физическими особенностями взаимодействия СВЧ-поля и ИК-излучения с продуктами. На предприятиях общественного питания для жаренья продуктов применяются сковороды, фритюрницы и жарочные конвейерные машины, а для выпечки кондитерских изделий - шкафы кондитерские, пекарские и электрические печи.

В сковородах тешловая обработка продуктов производится непосредственно на жарочной поверхности преимущественно основным способом.

По способу обогрева жарочной поверхности и виду энергоносителей различают сковороды с непосредственным и косвенным обогревом, электрические и газовые.

В связи со спецификой процессов жаренья продуктов основным способом сковороды должны соответствовать следующим технологическим требованиям:

- жарочная поверхность сковороды должна быть хорошо отшиифована и иметь ровную плоскость;
- температура всей жарочной поверхности сковороды должна быть равномерной;
- на сковородах разрешается осуществлять только жаренье продуктов основным или косвенным способом и запрещается использовать для фритюрного жаренья продуктов.

В настоящее время на предприятиях общественного питания широко используются электрические сковороды только с непосредственным обогревом - это сковороды секционные модулированные СЭСМ-0,2 и СЭСМ-0,5. Кроме того, в эксплуатации имеются сковороды СКЭ-0,3; СЭ-1 и СЭ-2, а также сковороды новой конструкции СЭ-0,45 и СЭ-0,22, которые предназначены для работы с функциональными емкостями.

Сковорода электрическая секционная модулированная СЭСМ-0,2 (рис. 11.1) предназначена для жаренья продуктов ос-

Рис. 11.1. Сковорода электрическая секционная модулированная СЭСМ-0,2:
1 - чаша; 2 - электрическая спираль; 3 - тумба; 4 - пружина; 5 - цапфа; 6 - кронштейн; 7 - механизм опрокидывения; 8 - рама; 9 - панель с элєкгроаппаратурой

168

Таблица 11.1. Технические характеристики сковород электрических СЭСМ-0,2 и СЭСМ-0,5		
	Марка сковороды	
Пар	СЭСМ-0,2	СЭСМ-0,5
Площадь пода чаши, м ${ }^{2}$	0,2	0,5
Вместимость чаши, $л$	36	90
Номинальная мощность, кВт	6	12
Максимальная температура на поду, ${ }^{\circ} \mathrm{C}$	300	
Прололжительность разогрева до температуры $250^{\circ} \mathrm{C}$, мин	35	35
Ндпряжение, В	380/220	
Габаритные размеры, мм:		
длина	1050	1470
ширина	840	840
высота	860	860
Macca, кr	225	325

новным способом и во фритюре, пассерования овощей, тушения, а также припускания мясных, рыбных и овощных изделий.

Сковороgа СЭСМ-0,5 по конструкции, принципу действия аналогична сковороде СЭСМ-0,2 и отличается от нее только ббльшими размерами, массой и потребляемой мощностью (табл. 11.1).

Сковорода СЭСМ-0,2 используется как самостоятельный апшарат или в составе технологической линии. Сковорода имеет прямоугольную чугунную чану 1 , облицованную стальными листами, покрытую белой эмалью и установленную на двух тумбах 3. Еe откидная крышка может удерживаться в любом положении с помощью двух пружин 4, размещенных внутри тумб. Между чугунной чашей и облицовкой проложен слой асбеста и фольги, служащий тепловой изоляцией.

Нагрев чаши сковороды осуществляется электрическими спиралями 2, расположенными в специальных канавках под ее диищем и изолированными фарфоровыми бусами.

На задней стороне чаши установлен терморегулятор ТР-4К, который предназначен для автоматического поддержания на ра-

Рис. 11.2. Сковорода электрическая с косвенным обогревом СКЭ-О,З:
1 - панепь электрооборудования; 2 - пакетный выключатель; 3 - терморегулятор; 4 - микроперекпючатепь; 5 - пружина микропереключателя; 6 - певая тумба; 7 - певая цапфа; 8 - кожух противня; 9 - противень; 10 - промежуточный теплоноситель; 11 - сетка для выемки продуктов; 12 - крышка противня: 13 - правая цапфа; 14 - правая тумба; 15 - сектор; 16 - червяк; 17 - маховик; 18 - механизм поворота; 19 - пробка сливной трубки; 20 сборник; 21 - ТЭН; 22 - распределительный щит: 23 - нижний лист

бочей поверхности заданной температуры. ТР-4K совмещает в себе термодатчик (термобаллон) и термореле.

Сковородд с правой и левой сторон крепится с помощью цапф 5 и кронштейнов 6 , которые смонтированы внутри тумб. Тумбы облицованы стальными листами, образуя вспомогательпые столы. Внутри иравой тумбы смонтирован механизм опрокидывания 7, который удерживает сковороду под любым углом от 0 до 90°.

На передней облицовке левой тумбы смонтированы кнопки управления и две сигнальные лампы. Внутри тумбы находится панель с электроаппаратурой 9.

Сковорода электрическая с косвенным обогревом СКЭ-0,3 (рис. 11.2) предиазначена для жаренья продуктов основным спо-

собом и во фритюре, а также для тушения и варки кулинарных изделий на предприятиях общественного питания. Она отличается от вышерассмотренной способом передачи теплоты к загрузочной чаше. Теплота к поверхности чаши нерсдается через промежуточный теплоноситель - минеральное масло.

Технические характеристики сковороды электрической с косвенным обогревом СКЭ-Ф,3

Площадь пода чаши, м ${ }^{2}$ 0,2
Вместимость чаши, дм ${ }^{3}$ 48
Количество ТЭНов 6
Мощность, кВт 9
Напряжение, В $380 / 220$
Габаритныс размеры, мм:
Алина 1350
ширина 860
высота 880
Macca, кr 290

Сковорода представляет собой чугунную чашу прямоугольной формы, герметично встроенную в кожух из тонколистовой стали, который цапфами 7, 13 опирается на две чугунные тумбы.

В замкнутую полость между чашей и кожухом, называемую маслянистой рубашкой, через закрываемое пробкой отверстие заливается минеральное масло, являющееся промежуточным теплоносителем 10. Масло нагревается шестью ТЭНами 21. Автоматическая защита от "сухого хода» обеспечивает отключение сковороды при опрокидывании чаши и понижении уровня минерального масла в рубашке. Температура минерального масла, а следовательно, и жарочной поверхности поддерживается автоматически с помощью терморегулятора 3. Необходимая температура нагрева устанавливается лимбом терморегулятора, который установлен на лицевой панели с левой стороны. Также имеются магнитный пускатель и пакетный выключатель 2. Поворотный механизм для опрокидывания чаши состоит из сектора 15 , закрепляемого на правой цапфе 13 , и червяка 16 с валиком, на который установлен маховик 17 с рукояткой.

Жаренье продуктов основным способом осуществляют следующим образом. Поворотом рукоятки переключателя включают сковороду. Внутреннюю поверхность чаши перед включением жарочной поверхности сковороды смазывают пищевым жиром и на дно ее укладывают полуфабрикаты. При необходимости сковороду закрывают крышкой 12. При жаренье продуктов во фритюре чашу за-

Рис. 11.3. Сковорода электрическая СЭ-1:
1 - левая тумба; 2 - левый кронштейн; 3 - загруэочная чаша; 4 - цапфа; 5 - спирали; 6 - крышка; 7 - правый кронштейн; 8 - правая тумба; 9 - поворотный механизм; 10-выключатепи

полняют жиром не более половины ее объема. Затем вклочают сковороду на полную мощность.

При достижении температуры жира $160 \ldots 170^{\circ} \mathrm{C}$ чашу загружают продуктами.

Сковороgа электрическая СЭ-1 (рис. 11.3) предназначена для пассерования овощей, а также жаренья основным способом, тушения и припускания мясных, рыбных и овощных кулинарных изделий.

Технические характеристики сковороды электрической СЭ-1

Площадь пода загрузочной чашии м 2................................ 0,48
Мощность, кВт .. 13
Напряжение, В .. 380/220
Продолжительность разогрева, мин 25
Габаритные размеры, мм:
минна 1490
ширина .. 965
высота ... 920
Macca, кг... 190
Чаша сковороды СЭ-1 имеет прямоугольную форму и сверху закрывается крышкой 6 , которая с помощью пружин устойчива в любом открытом положении.

172

Чугунная чаша снизу обогревается восемью электрическими спиралями 5, уложенными в канавки дна и изолированными фар()оровыми изоляторами в виде маленьких колец-бус. Каркас с чащей крепится на двух тумбах с помощью цапф. Внутри правой тумбы 8 вмонтирован поворотный механизм 9 , состоящий из червячного секгора и маховика. Внутри левой тумбы 1 вмонтированы три накетных выключателя 10 и вводной щиток.

Сковорода имеет четыре ступени нагрева с соотношением мощности 4:3:2:1.

При жареньи продуктов основным способом сковороду включают на высшую ступень нагрева, а через 25 ... 30 мин укладывают в чашу продукты и переключают на соответствующий нагрев. Включение, переключение и выключение электронагревателей производятся пакетными выключателями, установленными на лицевой части левой тумбы.

Сковорода электрическая СЭ-2 (рис. 11.4) предназначена для жаренья вторых блюд, гарниров, а также пирожков и пончиков на предприятиях общественного питания.

Технические характеристики сковороды электрической СЭ-2

Плоптадњ пода загрузочной чаши, м² 0,18
Мощность, кВт ... 5
Напряжение, В ... 220
Габаритные размеры, мм:
мина
980
ширина .. 615
высота .. 1000
Macca, кг... 130
Сковорода СЭ-2 имеет чугунную вилкообразную станину, на которой с помощью цапф закреплен корпус. Корпус состоит из чугунной чаши, заключенной в кожух 8 из нержавеющей стали. Под дном чаши установлены электрические нагревательные элементы закрытого типа.

На правой стороне станины расположен червячный поворотный механизм с маховиком 9 , с помощью которых корпус сковороды может поворачиваться на 120°. На левой стороне размещен щиток управления с шереключателем 4.

Включение, переключение и выключение производятся пакетным выключателем. Для переключения на сильный, средний или слабый нагрев переключатель устанавливается против соответствующих номеров ступеней нагрева, указанных на крышке кожуха переключателя. Соотношение мощности на соответствую-

Рис. 11.4. Сковорода электрическая СЭ-2:
1 - вводной щиток; 2 - станина; 3 - нагреватепьный элемент; 4 - перекпючатель; 5 - теплоизоляция; 6 - чаша; 7 - крышка; 8 - кожух; 9 - маховик поворотного механизма

щих ступенях нагрева $4: 2: 1$. Сверху загрузочная чаша сковороды закрывается съемной стальной крышкой 7.

Сковорода электрическая СЭ-0,45 (рис. 11.5) представляет собой установленную на ферме прямоугольную чашу 11, облицованную со всех сторон стальными листами. Между чашей и облицовкой находится теплоизоляция 9. Под дном чаши размещены кассеты с ТЭНами 14. Температура жарочной поверхности ноддерживается автоматически с помощью датчика-реле температуры 15. для слива содержимого чаши имеется механизм опрокидывания, состоящий из мотора-редуктора и винтовой передачи.

Сверху чаша закрывается крышкой 10 с фрикционным механизмом, удерживающим ее в открытом положении под углом 25 ... 90°. Механизм подъема крышки сблокирован с выключателем, который позволяет включать электродвигатель для опрокидывания чаши только при открытой крышке.

174

С правой стороны сковороды па лицевую панель выведены кнопки опрокидывания 1 и возвращения чаши сковороды в гориънтальное положение 2, ручка датчика-реле температуры и сигнальная лампа 3.

Конструкция сковороgы СЭ-0,22 отличается от конструкции сковороды СЭ-0,45 только устройством механизма оирокидывания чаши. Механизм опрокидывания сковороды СЭ-0,22 состоит из рычага, рукоятки, храпового колеса и собачки. Поворот чаши

Рис. 11.5. Сковорода электрическая СЭ-0.45:
а - вид спереди: б - вид по А-А: 1 - кнопка опрокидывания чаши; 2 кнопка возврата чаши в горизонтальное положение: 3 - сигнапьная лампа: 4 - пимб датчика-реле температуры; 5 - бпок зажимов: 6 - бопт заземления: 7 - приборный отсек; 8 - рама; 9 - теплоизоляция; 10 - крышка; 11 чаша; 12 - стоп; 13 - облицовка: 14 - ТЭНы; 15 - дәтчик-реле температуры; 16 - пружина

осуществляется рукояткой, а с помощью храповоюо колеса и собачки обеспечивается остановка чаши в нужном положении.

Правила эксплуатации электросковорол. При эксплуатации электросковороды соблюдают следующие последовательные операции: осмотр аппаратов, включение их в работу, контроль за работой аппарата, выключение аппарата.

Перед началом работы проверяют санитарно-техническое состояние электросковороды. Особое внимание обращают на исиравность заземления.

В электросковороды с непосредственным или косвенным обогревом сначала в чашу наливают необходимое количество жира и только потом включают ее в работу. При достижении заданной температуры в чашу сковороды загружают продукты.

Сковороды с непосредственным обогревом включают в работу нажатием кнопки "Вкл.». Если аппарат не имеет автоматического регулирования, его включают на полную мощность, а после разогрева переключают на температурный режим, необходимый для данного процесса.

Нельзя оставлять включенную электросковороду без присмотра. Не следует включать электросковороду, если в чаше нет жира. Несоблюдение этих требований может привес'ги к обгоранию

Табпица 11.2. Возможные неисправности электросковород, их причины и способы устранения

Неистравность	Причина	Способ устранения
Чаша сковороды не нагревается при включении иа любую ступень нагрева	Перегорели плавкие предохранители. Вышел из строя пакетный переключатель	Заменить плавкие предохранители. Заменить пакетный переключатель
Темшература рубашки сковороды отличается от заланных пределов	Неисправен терморегулятор	Отремонтировать или заменить терморегулятор
Маховик механизма опрокидывания чаши сковороды туто вращается	Нет смазки в цапфах или в червячном механизме	Смазать папфу или червячный механизм рекомендусмым маслом
Крышка сковороды не фиксируется в любом наклонном положении	Нарушена регулировка натяжения пружин, уравновешивающих крышку	Отрегулировать натяжение пружин поворотом оси, с которой они жестко связаны

чашии, а также к преждевременному выходу из строя нагревательнıх элементов.

После окончания работы сковороду отключают, охлаждают, терморегулятор устанавливают на "0» и проводят санитарную обработку. Пригоревшие к чаше частички продукта соскабливают деревянным скребком. После мытья чаши горячсй водой ее на некоторое время оставляют открытой для просушки, а затем смазывают пищевым жиром.

Возможные неисправности электросковород, возникающие при эксплуатации, и способъ их устранения приведены в табл. 11.2.

Сковорода газовая секционная модулированная СГСМ-0,5 (рис. 11.6) состоит из рабочей чаши 4 прямоугольной формы, которая имеет теплоизоляцию и облицована стальными листами, по-

Рис. 11.6. Сковорода газовая секционная модулированная СГСМ-О,5:
1 - регупируемая по высоте ножка; 2 - газоход; 3 - шибер в газоходе; 4чаша; 5 - керамические излучатели; 6 - крышка; 7 - трубчатая насадка; 8 рукоятка крышки; 9 - камера сгорания; 10 - маховик поворотного механизма: 11 - горелка

крытыми белой эмалью. Обогрев рабочей чани происходит неносредственно за счет расположенной под ней камеры сгорания 9.

Чаша сковороды с помощью цапф установлена на двух тумбах. В левой тумбе смонтированы тазопровод, блок автоматики безопасности и регулирования $2 \mathrm{APБ}-1$, блок пьезоэлектрического зажигания, терморегулятор TP-4K, чувствительный элемент которого расположен на задней стенке рабочей чаши, а лимб выведен на панель приборного отсека.

Сковорода газовая с косвенным обогревом СКГ-0,3 отличается от газовых сковород с непосредственным обогревом тем, что рабочая чаша ее обогревается с помощью промежуточного тенлоносителя - минерального масла.

Основное достоинство сковороды СКГ-0,3 - равномерный обогрев рабочей чаши при использовании любой мощности. Правила эксплуатации этой сковороды аналогичны правилам эксплуатации газовых плит.

11.2. ФРИТЮРНИЦЫ

Фритюрницы - это специдлизированные жарочные аппараты, предназначенные для жаренья кулинарных и кондитерских изделий в большом количестве жира, нагретого до температуры $160 \ldots 180^{\circ} \mathrm{C}$.

Фритюрница электрическая секционная модулированная ФЭСМ-20. Основанием фритюрницы ФЭСМ-20 (рис. 11.7) служит стол с жарочной ванной на регулируемых ножках, изготовленных из нержавеющей стали. Жарочная ванна имеет прямоугольную форму с переходом в нижней части в усеченную пирамиду, к которой приварен маслоотстойник 9 с фильтром 10 и краном 11 мя слива жира в бачок 13.

Нагрев жира осуществляется ТЭНами 4, которые закреилены в ТЭНодержателе 6 , что позволяет вынимать ТЭНы из жарочных ванн для санитарного и технического осмотра. Пространство жарочной ванны под ТЭНами является «холодной зоной», в которой при температуре $80^{\circ} \mathrm{C}$ осевшие частички жарящегося проАукта не могут интенсивно подгорать.

Регулирование температуры нагрева жира происходит автоматически с помощью терморегулятора TP-200. На передней верхней части фритюрницы расположены сигнальные лампы и пакетный переключатель Зеленая лампа показывает включение в рабо-

Рис. 11.7. Фритюрница злектрическая секционная модулированная ФЭСМ-20:
1 - рама; 2 - облицовка; 3 - жарочная ванна; 4 - ТЭНы; 5 - сетчатая корзина; 6 - ТЗНодержатель; 7 - стол; 8 - терморегупятор; 9 - маслоотстойник: 10 - фильтр; 11 - кран; 12 - регулируемые по высоте ножки; 13 - спивной бачок

ту ТЭНов, а желтая - достижение заданной рабочей температуры жира. Жаренье продуктов производится в сетчатой корзине 5 из пержавеющей стали, погружаемой в жарочную ванну с горячим маслом. Корзина имеет ручки и крючок, с помощью которою она подвешивается на скобу мля стекания масла.

Технические характеристики фритюрницы электрической секционной модулированной ФЭСМ-20

Производительность, кі/ч 12
Единовременная загрузка, кг 1
Объем заливаемоно масла, лм ${ }^{3}$ 20
Мощность, кВт 7,5
Напряжение, В 380/220
Продолжительность разогрева масла Ао температуры $180^{\circ} \mathrm{C}$, мин 20
Габаритные размеры, мм:
длина 420
пирина 840
высота 930
Macca, кr 90

Фритюрницы электрические ФЭ-20 и ФЭ-20-01 по принципу работы и устройству аналогичны фритюрнице ФЭСМ-20 и отличаются от нее только некоторыми конструктивными устройствами и габаритными размерами.

Фритюрницы непрерьвного действия электрические ФНЭ-10 и ФНЭ-5 аналогичны по конструкции фритюрнице ФЭСМ-20 и отличаются от нее только габаритными размерами и производительностью.

Фритюрница непрерьвного действия электрическая ФНЭ-40 (рис. 11.8) предназначена для жаренья картофеля и рыбы. Устанавливают ее в горячих цехах предприятий общественного питания. Она состоит из жарочной ванны 5, шнека 8 с электродвигателем 12, загрузочного и разгрузочного устройств, смонтированных на сварном каркасе 6, который облицован стальными эмалировапными листами с теплоизоляцией.

Жир в жарочной ванне нагревается ТЭНами 14, и температура иодлерживается автома‘ически электроконтактным термометром 2 ЭКТ-2. Кулинарные изделия из загрузочного бункера 10 транспортером 9 подаются в жарочную ванну, где их равномерно прожаривают, илавно перемещая вдоль ванны с помощью вращающегося шнека 8 через слой горячего жира. Выгружают готовый продукт, открыв автоматический опрокидывающийся разгрузочный лоток 1 .

Правила эксплуатации электрических фритюрниц. Перед началом работы проверяют санитарное и техническое состояние фритюрниц. Закрывают сливной кран и заливают жарочную ванну жиром до отметки на стенке ванны. Включают фритюрницу, и загорается желтая сигнальная лампа, после чего полуфабрикаты, заложенные в корзину, осторожно опускают в жарочную ванну Ая жаренья. Корзину с готовыми продуктами вынимают из ванны и вешают на скобу для стекашия излишков жира в ванну.

После окончания работы фритюрницу отключают, а остывший жир сливают через сливной кран в бачок, проводят санитарную обработку.

Жир, содержащий более 1% вторичных продуктов окисления, для дальнейшего использования непригоден. Во фритюрнице жир можно использовать не более 40 ч работы, после чего его необходимо замснить новым.

Жаровня вращающаяся электрическая ЖВЭ-720 (рис. 11.9) предназначена для выпекания блинов-полуфабрикатов прямоугольной формы на предприятиях общественного питания.

Несущей основой жаровни является двухъярусный стол, выполненный из уголковой стали и закрытый съемными эмалированными стальными листами. Сверху на столе на кронитейнах

Рис. 11.8. Фритюрница непрерывного действия электрическая ФНЭ-40:
а - общий зид: б - разрез: 1 - разгрузочный поток: 2 - злектроконтактный термометр; 3 - переключатели; 4 - дверцы; 5 - жарочная ванна; 6 - каркас; 7 разгрузочная попатка; 8 - шнек; 9 - транспортер; 10 - загрузочный бункер; 11 редуктор; 12 - электродвигатель; 13 - перфорированный лист; 14 - ТЗНы; 15 сливной кран; 16 - бачок; 17 - щиток с эпектрической аппаратурой управления

Рис. 11.9. Жаровня вращающаяся электрическая ЖВЭ-720:
а - вид сбоку; б - вид по А-А: 1 - противень; 2 - отсекатель; 3 - нож; 4 скребковый нож; 5 - жарочный барабан; 6 - кварцевый электронагреватель; 7 - термоэлектрический термометр; 8 - бак для теста; 9 - крышка бака; 10 сито; 11 - лоток для теста; 12 - кран; 13 - фиксатор; 14 - электродвигатель; 15 и 16 - съемные крышки

закреплен полый чугунный жарочный барабан 5, а гакже бак 8 , лоток 11 для теста и отсекающий механизм.

В нижней части стола установлен привод, который состоит из электродвигателя 14 , редуктора, цепной передачи для вращения жарочного барабана и реечной передачи для колебательного движения отсекателя 2.

Нагрев жарочной поверхности барабана осуществляется за счет лучистой энергии, выделяемой кварцевыми электронагревателями 13, установленными внутри барабана, а температура его поддерживается автоматически с помощью гермоэлектрического термометра 15.

Бак для теста расположен на подставке, снабжен ситом 10 и закрывается крышкой 9. Полый лоток, в который подается холодная вода, служит для формовки тестяной ленты и подачи ее к жа-

рочному барабану. Снизу от барабана расположен скребковый нож, отделяющий готовую тестяную ленту.

Технические характеристики жаровни вращающейся электрической ЖВЭ-720

Производительность, urt./ч 720
Мощность, квт 15,4
Размеры блина, мм 280×240
Вместимость бака для теста, дм ${ }^{3}$ 30
Рабочая температура барабана, ${ }^{\circ} \mathrm{C}$ $160 . . .190$
Габаритные размеры, мм: 1000
ширина 700
высота 1300
Масса, кг 250

Принцип работы жаровни ЖВЭ-720. Подготовленное тесто заливают в бак для теста, через кран 12 оно поступает на наклонный лоток, установленный вплотную к нагретому барабану. Горячий барабан, вращаясь непрерывно, захватывает своей поверхностью тесто на всей ширине лотка и за поворот на 270° прожаривает сплошную блинную ленту. От иоверхности барабана блинная лента отделяется скребковым самозатачивающимся ножом. Затем блинная лента с помощью направляюицих и ножа нарезается на прямоугольные блинчики-полуфабрикаты и укладывается на поддон. Запекание блинной ленты происходит без смазывания жарочной поверхности пищевым жиром за счет жира, содержащегося в тесте.

Вращающаяся жаровня электрическая ВЖШЭ-675 отличается от жаровни ЖВЭ-720 отсутствием устройства для автоматического регулирования заданной температуры барабана и некоторыми конструктивными элементами.

Правила эксплуатации жаровни ЖВЭ-720. Перед началом работы проверяют санитарное и техническое состояние жаровни. Смазывают пищевым жиром кромки скребка, отрезного ножа, отсекатель, лоток и открывают подачу воды в пароводяную рубашку лотка, чтобы тесто не припекалось к его кромке, примыкающей к жарочному барабану. Затем включают жаровню для нагрева, заливают в бак тесто и через $10 \ldots 15$ мин включают машину для выпечки блинчиков. Во время работы следят за равномерной подачей теста, чистотой скребка и отрезного ножа.

После окончания работы жаровню отключают от сети, прекращают подачу воды в лоток и проводят санитарную обработку.

Жарочные шкафы предназначешы для жаренья мясных и рыбных продуктов, а также запекания овощных и крупяных блюд.

Пекарные шкафы предназначены для выпечки мелких хлебобулочных и кондитерских изделий. Жарочные и кондитерские шкафы различаются между собой количеством и размерами рабочих камер, температурой в камере и удельной поверхностной мощностью нагревателя.

В настоящце время на предприятиях общественного питания в эксмлуатации находятся жарочные шкафы ШЖЭСМ-2К, ШЖЭ-0,85, ШЖЭ-0,51, ШЖЭ-1,36, ШК-2А и пекарные шкафы ШПЭСМ-3, ЭШ-3М, КЭП-400 (табл. 11.3). В шкафах типа ШЖЭ тепловая обработка продуктов осуществляется в функциональных емкостях высотой не более 65 мм.

Шкаф жарочный электрический секционный моgулированный ШЖЭСМ-2К (рис. 11.10) состоит из двух однотипных унифицированных жарочных секций (камер), установленных на инвентарном шкафу-подставке 14 с регулируемыми по высоте ножками 15. Каждая секция состоит из внутреннего и наружного коробов, иространство между которыми заполнено теплоизоляционными материалами 18. Секции выполнены из стальных листов и оборудованы внутри полками для противней. Дверцы секций установлены на шарнирах и с помощью пружин плотно прижимаются к корпусу и открываются вниз.

Нагрев секций производится ТЭНами, установленными во внутреннем коробе по 3 шт. сверху и по 3 шт. снизу. Верхние ТЭНы 16 открыты, нижние ТЭНы 20 закрыты подовым листом. Пары и газы, образующиеся при тепловой обработке продуктов, удаляются через вентиляционное отверстие, которое регулируется шиберной заслонкой. С правой стороны жарочного шкафа ШЖЭСМ-2 в специальном отсеке расположен блок электроаппаратуры. На его лицевую панель отдельно мяя каждой секции выведено: два пакетных переключателя 9 и 11 для раздсльного управления верхними и нижними ТЭНами; лимбы терморегуляторов 7 и сигнальные лампы 8 и 10, а также рукоятка поворота шиберной заслонки 6 .

Пакетные переключатели изменяют мощности регулирования верхних и нижних ТЭНов переключением на режимы $4: 2: 1$.

Терморегулятор поддерживает в автоматическом режиме заданную температуру секции в пределах $100 \ldots 350^{\circ} \mathrm{C}$. Сигнальные лампы позволяют визуально контролировать работу ТЭНов.

Мощность, кВт	9,6	9	14,	16,2	50,5	12	8
Число камер, шт.	2	2	3	3	1	5	3
Количество ТЭНов, шт.	6	8	12	12	12	12	8
Продолжительность разогрева камеры, мин	60	100	60	70	40	35	35
Максимальная температура в камере, ${ }^{\circ} \mathrm{C}$	350	350	350	250	350	350	350
Габаритные размеры, мм длина высота ширина	$\begin{gathered} 900 \\ 1080 \\ 825 \end{gathered}$	$\begin{gathered} 940 \\ 1555 \\ 1114 \end{gathered}$	$\begin{aligned} & 1200 \\ & 1630 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1438 \\ & 1610 \\ & 1110 \end{aligned}$	$\begin{gathered} 800 \\ 1940 \\ 2270 \end{gathered}$	$\begin{gathered} 500 \\ 1500 \\ 800 \end{gathered}$	$\begin{aligned} & 500 \\ & 980 \\ & 800 \end{aligned}$
Macca, кr	150	310	480	430	2000	160	120

Рис. 11.10. Шкаф жарочный электрический секционный модулированный ШЖЭСМ-2К:
а - вид спереди: 5 - вид по А-А: 1 - дверца инвентарного шкафа-подставки: 2 и 4 - дверцы жарочных шкафов; З и 5 - ручки: 6 - рукоятка поворота шиберной заслонки; 7 - пимб терморегупятора; 8 и 10 - сигнальные лампы: 9 и 11 - пакетные переключатели; 12 - панель управления; 13 - отверстия дпя воздушного охлаждения электроаппаратуры; 14 - инвентарный шкаф-подставка: 15 - регулируемые по высоте ножки; 16 и 20 - ТЭНы; 17 - противень: 18 - теплоизопяция; 19 - решетка; 21 - подовый лист

Аля охлаждения электроаппаратуры в нижней части лицевой панели предусмотрены отверстия 13.

Жарочный конgитерский шкаф ШК-2А отличается от ШЖЭСМ-2К только тем, что изготовлен не в модулированном исполнении.

Шкаф пекарный электрический секционный моgулированный ШПЭСМ-3 (рис. 11.11) может отдельно устанавливаться на предприятиях общественного питания или в составе технологических линий. Шкаф предназначен для выпечки только кондитерских и мелких хлебобулочных изделий. Он имеет сварную подставку 8 , на которой установлены одна над другой три секции (камеры). С зддней и боковых сторон и сверху шкаф облицован

стальными эмалированными листами. Пространство между секциями и облицовкой заполнено теплоизоляционным материалом.

Дверцы шкафа закреплены шарнирами и теплоизолированы, они имеют зддвижку для удаления из секции испарений, образующихся при выпечке кондитерских изделий.

В правой части шкафа находится отсек с тремя блоками управления (для каждой секции отдельно). На лицевой панели блока имеются сигнальные лампы, показывающие интенсивность нагрева, установленного с помощью переключателя, и лимб терморегулятора, автоматически поддерживающего в рабочей камере заданную температуру.

Шкаф пекарный ЭШ-3М имеет аналогичную конструкцию, но изготовлен не в модулированном исполнении.

Кондитерская электрическая печь КЭП-400 (рис. 11.12) предназначена для выпечки широкого ассортимента мелких хлебобулочных и кондитерских изделий.

Кондитерская электрическая печь КЭП-400 представляет собой шкаф, состоящий из металлического каркаса с облицовкой из листовой стали.

Рис. 11.11. Шкаф пекарный электрический секционный модулированный ШПЭСМ-З:
1 - панель управления; 2. З и 4 - рабочие камеры; З-дверца средней секции: 5 и 7 - соответственно верхние и нижние ТЭНы; 6 - кондитерский лист: 8 - подставка; 9 - термобаллон датчика-реле температуры

Рис. 11.12. Кондитерская электрическая печь КЭП-400:
1 - каркас печи: 2 - дөерь нижнего отсека; 3 - выключатепи; 4 - реле времени; 5 - дөерь среднего отсека; 6 - сигнапьные пампы; 7 - терморегупятор; 8 - дверь верхнего отсека; 9 - механизм вращения тележки: 10 - смотровое окно; 11 - центрирующий шарик; 12 - стеллажная тележка; 13 - клемма для заземления каркаса печи

Технические характеристики кондитерской электрической печи КЭП-400

Мощность, квт 50,5
Напряжение, В 380
Продолжительность разогрева камеры, мин 40
Произнодительность, кг/смену 400
Число стеллажных тележек, шт. 6
Габаритные размеры, мм:
Алина 1800
іширина 2270
высота 1940
Macca, кг 2000

Рабочая камера печи изолирована от облицовочных листов теплоизоляционным материалом.

Печь разделена на две половины: в левой половине помещены ТЭНы, вентилятор, парогенератор, система управления и сигнализация, в правой половине - пекарная камера с дверью.

188

левая часть печи имеет три отсека, каждый отсек открывается своей дверцей 2,5 и 8 . В верхнем отсеке находится терморегулятор 7 и вентилятор с электродвигателем для принудительной циркуляции нагнетаемого воздуха.

В среднем отсеке встроены реле времени 4, выключатели 3, сигнальные лампы 6 и кнопка управления подачи воды в парогенератор, щит с электрооборудованием управления и сигнализации.

В нижнем отсеке находится парогенератор, нагреваемый ТЭНами, патрубок для присоединения шланга шитательной воды и патрубок для отвода конденсата.

Выпечка хлеба и кондитерских изделий производится на подах, установленных на стеллажную тележку 12 , которая вкатывается в пекарную камеру печи. В пекарной камере тележка фиксируется с помощью центрирующего шарика 11, а сверху сцепляется с механизмом вращения тележки 9 .

Механизм приводит тележку во вращение в процессе выпечки изделия.

Пароувлажнение пскарной камеры осуществляется паром, получаемым в собственном парогенераторе, который состоит из чугунных теплонакопительных труб, нагреваемых 12 ТЭНами.

Процесс выпечки автоматизирован с помощью системы управления и сигнализации. Продолжительность процесса устанавливается на реле времени 4 . По истечении установленного времени нодаются звуковой и световой сигналы.

Аверь камеры имеет электрическую блокировку, и работа печи возможна только при закрытой двери.

Аля наблюдения за процессом работы печи предназначено смотровое окно 10 в двери камеры. Пекарная камера освещается во время работы двумя лампами.

Правила эксплуатации кондитерской электрической печи КЭП-400. К работе с печью допускаются лица, знаюцие ее устройство и правила техники безопасности.

Перед включением печи проверяют исправность заземления и санитарное состояние, а также исправность пускорегулирующих приборов. Затем устанавливают лимб терморегулятора на необходимую температуру, подключают к электросети и с помощью пакетных переключателей включают рабочие камеры на сильный нагрев. При этом загораются сигнальныє лампы. Как только камера прогреется до заданной температуры, сигнальные лампы гаснут, свидетельствуя о готовности печи к работе. Осторожно открывдют дверки, устанавливают противни или кондитерские листы с продуктами. Пакетные переключатели переводят на слабый

или сильный нагрев в зависимости от требований технологии приготовления кулинарных изделий. При переводе печи на более низкую температуру нагрева выключают ТЭНы и дают ей остыть до необходимой температуры. После этого переводят лимб терморегулятора на более низкую степень нагрева и включают ТЭНы.

Объем вьххоящего пара, образующегося при выпечке продуктов, регулируют с помощью вентиляционного отверстия в зависимости от требований технологического процесса приготовления пиши.

Печь содержат в чистоте. Ежедневно ее наружную поверхность протирают влажной тканью или промывают мыльным раствором, а затем насухо вытирают фланелью. Хромированные детали вытирают мягкой сухой тканью. Перед уборкой или осмотром печь обязательно отключают от электросети.

11.4. ВЫСОКОЧАСТОТНЫЕ ШКАФЫ

На предприятиях общественного питания в настоящее время используют СВЧ-шкафы «Славянка», «Волжанка», "Электроника», которые предназначены для быстрого приготовления и разогревания кулинарных изделий, напитков и размораживания готовых блюд в электромагнитном поле токов высокой частоты.

СВЧ-икаф «Электроника» (рис. 11.13) в правой части имеет генератор СВЧ, который связан с рабочей камерой 10 волноводом, блоком пи'тания и элементами автоматики. В левой части шкафа расположена рабочая камера, закрываемая дверью 1 с уплотнителями и специальным стеклом, защищающими от утечки токов сверхвысокой частоты.

На передней панели справа находятся переключатель реле времени 3, ручка регулятора мощности 4 и кнопки включения и выключения шкафа. Нагрев продуктов в шкафу осуществляется в результате преобразования энергии электромагнитных волн сверхвысокой частоты в тепловую, что дает уменьшение продолжительности приготовления в $2 \ldots 3$ раза, сохранение питателыных свойств продуктов, их аромата и умеренный расход электроэнергии. Эти качества выгодно отличают СВЧ-шкафы от традиционных газовых и электрических плит.

Безопасность работы шкафа обусловлена наличием в электрической схеме специальной блокировки, которая автоматически отключает подачу СВЧ-тока при открытии дверцы камеры, а также экранировкой шкафа.

Рис. 11.13. СВЧ-шкаф «Электроника»:
а - вид спереди; б - вид сбоку: 1 - дверь; 2 - панель управления; 3 - реле времени; 4 - ручка регулятора мощности; 5 - винт; 6 - крышка; 7 - лампа; 8 - рабочая камера

Аля приготовления пищи в СВЧ-шкафах используется посуда, изготовленная из стекла, фарфора, керамики, пищевой пластмассы или бумажной упаковки при условии, что на них нет металлической краски (золотого или серебряного ободка или орнамента).

Правила оксплуатации СВЧ-шкафа "Электроника». Перед включением СВЧ-шкафа необходимо провести санитарную обработку рабочей камеры, вытереть ее насухо и проветрить. Установить посуду с подготовленным полуфабрикатом пищи на поддон и закрыть дверцу рабочей камеры. Перед включением повернуть ручку реле времени по часовой стрелке до отказа, а затем вращением ручки в обратном положении установить выбранное время приготовления пищи. Включить шкаф нажатием на кнопку «Нагрсв», при этом включается подсветка рабочей камеры. После окончания работы шкаф отключить от электрической сети, промыть рабочую камеру теплой водой и просушить.

Требования по технике безопасности СВЧшкафов. Шкаф должен быть установлен вдали от устройств, имеющих естественное заземление (газовые плиты, радиаторы отопления, водопроводные краны и мойка).

Запрещается эксплуатация СВЧ-пкафов в помещениях с повышенной опасностью, характеризующихся наличием сырости, химически активной среды, токопроводящих полов: металлических, земляных, железобетонных. Нельзя включать в одну розетку СВЧ-шкаф и другие приборы, допускать попадания предметов н отверстия для защелки двери.

Запрещается эксплуатация СВЧ-шкафа:

- при повреждении шнура питания;
- в случае повреждения защитной сетки двери, деформации или повреждения рабочей камеры, двери, механизма ее фиксации;
- в случае, если СВЧ-шкаф включается при неплотно закрытой двери.

Запрещается при включении в сеть СВЧ-шкафа одновременно прикасаться и к нему, и к устройству, имеющему естественное заземление.

СВЧ-шкаф необходимо отключать от электрической сети в случае перемещения его в другое место, а также во время санитарной обработки, технического обслуживания и ремонта специалистом, в том числе и для замены электрической лампочки.

Запрещается самостоятельно устранять какие-либо неисправности СВЧ-шкафа, возникающие в процессе эксплуатации.

КОНТРОЛЬНЫЕ вОПРОСЫ

1. Перечислите аппараты, применяемые на предприятиях общественного питания дпя жаренья и выпекания продуктов питания.
2. Какое масло заливают в замкнутую попость между чашей и кожухом электрических сковород с косвенным обогревом?
3. Расшифруйте обозначение оборудования ШПЭСМ-З и назовите основные правила его эксплуатации.
4. Опишите устройство и правила эксплуатации электрических сковород.
5. Опишите устройство и принцип работы электросковороды СКЭ-О,З.
6. Как регупируется температура жарочных шкафов?
7. Опишите назначение устройства и принцип работы КЭП-400.
8. В чем отпичие традиционного способа нагрева продуктов от тепловой обработки их в электромагнитном поле СВЧ?

Глава 12

ВАРОЧНО-ЖАРОЧНОЕ ОБОРУДОВАНИЕ

12.1. КЛАССИФИКАЦИЯ ВАРОЧНО-ЖАРОЧНОГО ОБОРУДОВАНИЯ

Плиты относятся к универсальному тешловому оборудованию с непосредственным обогревом. Они предназначены для приготовления горячих блюд в наплитной посуде или непосредственно на поверхности конфорки, а также в жарочном шкафу. В зависимости от вида используемого топлива и энергии применяют различные конструкции плит. Однако все плиты имеют общие конструктивные элементы: жарочные поверхности и жарочные и тепловые шкафы.

На предприятиях общественного питания используются элекгрические плиты различных конструкций. Эти плиты просты по устройству, но различаются габаритными размерами, мощностью, количеством и формой конфорок, а также наличием или отсутствием жарочных шкафов.

В настоящее время промышленность выпускает электрические илиты секционные модулированные и несекционные. Секционномодулированные электроплиты разделяются на электроплиты, приготовление пищевых изделий на которых осуществляется в наплитной посуде (ПЭСМ-4, ПЭСМ-4Ш, ПЭСМ-2К и др.), и на электроплиты, пищевые изделия на которых готовят непосредственно на жарочной поверхности (ПЭСМ-1Н, ПЭСМ-2НШ).

Аля тепловой обработки полуфабрикатов в функциональ॥ых емкостях используют плиты ПЭ-0,51, ПЭ-0,51-01, ПЭ-0,17, ПТ-0,17-01.

На предприятиях общественного питания с буфетным обслуживанием применяются малогабаритные секционно-модулиронанные плиты ПНЭН-0,2 и ПНЭК-2, а также несекционные плиты ЭП-7, ЭП-8, ЭП-4, ЭП-2М, ЭПМ-5, ЭПМ-3М, ЭПН-4.

Рис. 12.1. Плита электрическая секционная модулированная ПЭСМ-4:
1 - конфорки; 2 - стол; 3 переключатель типа ТПКП; 4- поддон: 5- шкаф-подставка; 6 - дверца шкафа; 7 - регулируемые по высоте ножки

На предприятиях общественного питания широко используются плиты на газовом обогреве. В настоящее время отечественная промышленность выпускает только секционные модулированные плиты ПГСМ-2 и ПГСМ-2Ш.

На малых предприятиях общественного питания применяют бытовые газовые плиты, которые различаются по конструкции, объему жарочного шкафа, наличию приборов автоматики и специальных приспособлений.

12.2. ПЛИТЫ ЭЛЕКТРИЧЕСКИЕ

Плита электрическая секционная модулированная ПЭСМ-4 (рис. 12.1) состоит из четырех конфорок 1 и инвентарного шкафаподставки 5. Плита предназначена для приготовления горячих блюд в наплитной посуде. Используется она как самостоятельный апшарат или входит в состав технологической линии.

Технические характеристики плиты ПЭСМ-4

Площадь рабочей поверхности конфорки, м ${ }^{2}$ 0,48
Количество копфорок, ніт 4
Мощность, кВт 14
Напряжение, В 380/220
Р'лбочая температура поверхности конфорок, ${ }^{\circ} \mathrm{C}$ 450
Ilродолжительность разогрева, мин 60
Глбаритные размеры конфорок, мм:
Алина 417
ширина 295
Габаритные размеры плиты, мм: длина 840
ширина 840
высота 860
Macca, кг 210

Конструкция плиты выполнена в виде рамы, расположенной на четырех регулируемых по высоте ножках 7.

Жарочная поверхность представляет собой стол 2, на котором смонтированы четыре прямоугольные конфорки. Рабочая поверхность каждой конфорки нагревается спиралями, заложенными в пазы днища конфорки в изолированной массе. При включении режима слабого нагрева электрический ток проходит через две спирали, включенные последовательно, при среднем нагреве элекгрический ток подается на одну спираль, а для сильного нагрева конфорки электрический ток подается на две спирали, включеннне параллельно.

Рис. 12.2. Плита электрическая секционная модулированная ПЭСМ-4ШБ:
1-подставка; 2 - жарочный шкаф; З - конфорка; 4 - стол; 5 - переключагепь; 6 - поддон; 7 - ТЭН; 8 - противень; 9 - дверца жарочного шкафа; 10 - регупируемая по высоте ножка

Регулирование мощности каждой конфорки - ступенчатое, осуществляется с помощью переключателя типа ТПКП 3 на режимы $4: 2: 1$.

Аля сбора пролитой жидкости блок конфорок имеет выдвижной поддон 4.

Облицовка корпуса плиты выполнена из стальных листов, покрытых белой эмалью и закрепленных на верхней и нижней частях рамы.

Пиита электрическая секционная модулированная ПЭСМ-4ШБ (рис. 12.2) предназначена для приготовления горячих блюд в наплитной посуде, а также для жаренья, запекания и выпечки кулинарных и кондитерских изделий в жарочном шкафу. Плита может работать как самостоятельный аппарат или использоваться в составе технологической поточной линии.

Технические характеристики плиты ПЭСМ-4ШБ

Площадь рабочей поверхности конфорки, м ${ }^{2}$ 0,48
Количество конфорок, нит. 4
Мощность, кВт 18,8
Напряжение, В 380/220
Рабочая температура, ${ }^{\circ} \mathrm{C}$: поверхности конфорок 450
жарочного шкафа 350
Продолжительность разогрева до рабочей температуры, мин 60
Габаритные размеры конфорок, мм:
длина 417
ширина 295
Габаритные размеры плиты, мм:
длина 840
ширина 840
высота 860
Macca, kr 210

Плита ПЭСМ-4ШБ состоит из четырех прямоугольных конфорок и жарочного шкафа с бортами для перемещения наплитной посуды.

Корпус плиты представляет собой каркас, к которому крепятся рабочая поверхность (стол) 4 и жарочный шкаф 2. Рабочая поверхность имеет четыре прямоугольные конфорки 3, образованные в два унифицированных блока. Блоки очень удобны для санитарной обработки, осмотра и ремонта плиты, так как их можно за счет установки на специальных отктдывающихся кронштейнах наклонять. Каждая конфорка имеет свой четырехпозицион-

пий переключатель 5, с помощью которого регулируется мощ-川м"ть ее нагрева в соотношении $4: 2: 1$.

Жарочный шкаф представляет собой камеру, состоящую из Авух стальных коробов - внутреннего и наружного, а простран("но между ними заполнено теплоизоляционным материалом. Начрев жарочного шкафа осуществляется ТЭНами, расположенными по 3 шт. сверху и 3 шгт. снизу и имеющими раздельное вклюเलние.

Температура в шкафу подлерживается автоматически терморе'уля'гором TP-4K. Переключатели управления и сигнализации работы плиты установлены на передней панели с правой стороны.

Плита электрическая секционная мобулированная ПЭСМ-4Ш отличается от плиты ПЭСМ-4ШБ только тем, что не имеет боковых бортов для перемещения наплитной посуды.

Плита электрическая секционная моуулированная ПЭСМ-2 иредназначена для приготовления горячих блюд в нашлитной посуде. Плита состоит из двух прямоугольных конфорок и инвентарного шкафа-подставки.

Конструкция плиты аналогична конструкции плиты ПЭСМ-4Ш и отличается от нее только размерами и потребляемой мощностью конфорок.

Плита электрическая секционная модулированная ПЭСМ-1Н (рис. 12.3) предназначена для жаренья блинов и оладий непосредственно на рабочей поверхности конфорки, смазанной жиром.

Рис. 12.З. Плита электрическая секционная модулированная ПЭСМ-1H:
1 - конфорка; 2 - стол; 3 переключатель; 4 - поддон; 5 -ぃкаф-подставка; 6 - дверца жарочного шкафа; 7 - регулиןуемые по высоте ножки

Плита состоит из конфорки и инвентарного шкафа-подставки, в котором можно хранить посуду.
Технические характеристики плиты электрической секционной модулированной ПЗСМ-1Н
Площадь жарочпой поверхности, м² 0,24
Количество конфорок, шг 1
Мощнос'т, кВт 3,6
Напряжение, В $380 / 220$
Рабочая температура поверхности конфорок, ${ }^{\circ} \mathrm{C}$ 300
Габаритные размеры конфорки, мм:
длина 610
ширина 417
Габаритние размеры плиты, мм: миина 420
ширина 840
высота 860
Macca, кr 110
Конструкция плиты ПЭСМ-1Н аналогична конструкции плитыПЭСМ-2 и отличается тем, что имеет на подъемном столе толькоодну смонтированную конфорку и переключатель.

Плита электрическая секционно-модулированная ПЭСМ$2 Н Ш$ состоит из двух конфорок для непосредственного жаренья блинов и оладий на рабочей поверхности, а также запекания и вышечки кулинарных и кондитерских изделий в жарочном шкафу.

Технические характеристики плиты ПЭСМ-ГНШ

Площадь жарочной поверхности, м ${ }^{2}$ 0,48
Количество конфорок, шт. 4
Мощность, кВт 14
Напряжение, В $380 / 220$
Рабочая температура, ${ }^{\circ} \mathrm{C}$:
поверхности конфорок 300
жарочного шкафа 350
Габаритные размеры, мм:
длина 840
ширина 840
высота 860
Macca, кг 260

Используется она на предприятиях общественного питания в виде отдельно стоящего аппарата или в составе технологической линй.

198

Рис. 12.4. Плита электрическая ПЭ-0,51:
" - вид спереди; б - вид по А-А: 1 - полка; 2 и З - боковины; 4 и 5 - облицовки; 6 - каркас; 7 - ограждение; 8 - конфорки; 9 - регулирующий болт; 10 - стол; 11 - панель управления; 12 - переключатель; 13 - блок зажимов; 14 - крышка: 15 - рама: 16 - стяжка

В отличие от плиты ПЭСМ-1Н плита ПЭСМ-2НШ состоит из Авух унифицированных конфорок и жарочного шкафа, нахолящихся на подставке с регулируемыми по высоте ножками.

Жарочный шкаф представляет собой камеру, конструкция коюрой андлогична конструкции камеры плиты ПЭСМ-4Ш.

Плита электрическая ПЭ-0,51 (рис. 12.4) служит Аля теплоной обработки полуфабрикатов в функциональной и лругих емкостях. Плита установлсна на общую ферму совместно с другими আппаратами и имеет три прямоугольные конфорки 8, установленные на верхней части каркаса. Каждая конфорка снабжена переключателем 12, с помощью которого осуществляется отключение и ступенчатое регулирование ее мощности на слабый, средний и сильыый нагрев.

Лицевая сторона плиты, где расположены переключатели, блок зыжимов 13 и электрокоммутациопная проводка, закрыта панелью, а остальные стороны - облицовкой $4,5$.

Плима электрическая ПЭ-0,17 имеет конструкцию, аналогичиую конструкции плиты ПЭ-0,51 (табл. 12.1), но отличается от нее 'ем, что имеет одну конфорку, а также что в плоскости конфорки на большей ее стороне установлен дополнительный борт, который может располагаться как с правой, так и с левой стороны

Параметр	Марка шииты	
	П- 0.51	ПЭ-0.17
Мощности، кВт	12	4
Напряжение, В	380/220	220
Площадь рабочей поверхности конфорки, м ${ }^{2}$	0,51	0,17
Количество конфорок, шт.	3	1
Продолжительность разогрева до рабочей температуры, мин	60	60
Габаритные размеры, мм: длина ширина bucota	$\begin{gathered} 1000 \\ 800 \\ 330 \end{gathered}$	$\begin{aligned} & 500 \\ & 800 \\ & 330 \end{aligned}$
Macca, кг	140	50

плиты, не выступая за ее габариты. Плита ПЭ-0,17 работает на однофазном токе и нашряжении 220 B.

Плита настольная электрическая ПНЭК-2 (рис. 12.5) предназначена для подогрева в наплитной посуде первых и в'горых блюд. Опа используется на специализированных предприятиях общественного питания с буфетным обслуживанием.

Технические характеристики плиты настольной электрической ПНЭК-2

Мощность, кВт 2,4
Напряжение, В 220
Площадь рабочей поверхности конфорки, м² 0,052
Аиаметр конфорки, мм 180
Продолжительность разогрева конфорки, мин 20
Габаритные размеры, мм:
длина 420
шириша 360
высота 275
Macca, кг 25
200

Плита настольная электрическая ПНЭК-2 имеет две конфорки. Клждая из них снабжена переключателем, посредством которого осуществляется включение конфорки и ступенчатое регулирование ее моцности. Аля сбора пролитой на плиту жидкости плита имеет выдвижной поддон.

Плита настольная электрическая ПНЭН-0,2 предназначена мля жаренья блинов, оладий и кулинарных изделий непосред("твенно на рабочей поверхности конфорки, температура которой регулируется терморегулятором.

Технические характеристики плиты настольной электрической ПНЭН-О,2

Мощность, кВт ... 3,6
Напряжение, В ...380/220
Площадь рабочей поверхности, m^{2}...................................... 0,2
Диаметр конфорки, мм .. 420/595
Продолжительность разогрева копфорки, мин 60
Габаритные размеры, мм:
Аина ... 420
ширина .. 360
высота ... 275
Maсса, кг... 50

Рис. 12.5. Плита настольная электрическая ПНЭК-2:
1 - конфорки: 2 - подьемный стол; 3 - поддон; 4 - переключатель

Конструкция плиты ПНЭН-0,2 аналогична конструкции плиты ПНЭК-2 и отличается от нее тем, что в ней используется только одна прямоугольная конфорка вмссто двух круглых.

Электрическая плита ЭП-4М (рис. 12.6) предназначена для ириготовления первых, вторых и третьих блюд в наплитной посуде, а также для жаренья кулинарных и выпечки кондитерских изделий в жарочном шкафу.

Рис. 12.6. Электрическая плита $Э П-4 М$:
а - вид спереди; б - вид сверху; в - общий вид: 1 - терморегулятор; 2, 12 и 13- переключатели жарочного шкафа; 3 и 11 - дверцы жарочного шкафа; 4 и 20 - переключатели конфорок; 5 и 14 - поддоны; 6 и 19 - конфорки: 7 и 18-бортовая поверхность; 8 и 17 - кронштейн поручней; 9 и 15 - поручни; 10- жарочный шкаф; 16 - болты регулирования уровня конфорки; 21, 22 и $23-$ ТЗНы

202

Технические характеристики плиты электрической ЭП-4М

Мощность, кВт 25,5
Напряжение, В 380/220
Аиаметр конфорки, мм 370/405
Площадь жарочной поверхности, ми 0,9
Габаритные размеры, мм: длина 1730
ширина 1430
высота 810
Macca, кг 390

Верхняя часть плиты образует жарочный настил, состояциий из пести прямоугольных конфорок 6 и 19. Под конфорками находятся выдвижной поддон 5 и 14 для сбора пролитой жидкости и жарочный шкаф 10.

Жарочный шкаф представляет собой двустенную камеру с теплоизоляцией между стенками, обогреваемую в верхней и нижней частях ТЭНами, которые поддерживают температуру $100 \ldots 150^{\circ} \mathrm{C}$ с помощью терморегулятора 1. Аля регулирования мощности конфорки и ТЭНов жарочного шкафа на каркасе плиты установлены пакетные переключатели 4 и 20, с помощью которых устанавливают три степени нагрева.

Каждая конфорка имеет переключатель, позволяющий переключить на режимы в соотнопении $4: 2: 1$, что соответствует (ильному, среднему и слабому нагреву.

По всему периметру жарочной поверхности смонтирована бортовая поверхность 7 для удобного размещения наплитной посуды. Вокруг плиты в целях безопасности устанавливаются на кронштейнах метамииеские поручни 9 и 15 .

Конфорки и шкаф рекомендуется включать на максимальную мощность только в момент разогрева плиты или для приготовлеиия блюд, требующих высокой температуры. Плита работает от rрехфазной сети переменного тока.

Электрические плиты ЭП-4, ЭП-7, ЭП-8 (рис. 12.7) аналогичн, по конструкции плите ЭП-2М, но имеют меньшие размеры. ()ии применяются на небольших предприятиях общественного питания. У плиты ЭП-4 четыре круглые конфорки и жарочный пкаф, у плиты ЭГ-7 две прямоугольные конфорки и жарочный шкаф, у плиты ЭП-8 одна прямоугольная конфорка и жароюный шкаф. В жарочньх шкафах терморегуляторы не устанавлиъґются. Вверху и внизу шкаф обогревается ТЭНами. Под жарочным настилом установлен поддон для сбора пролитой жидкости.

Включение конфорок, а также верхних и нижних ТЭНов жарочного шкафа ипдивидуальное трехступенчатое, как у плиты ЭП-2М.

Плита электрическая мармитная ЭПМ-5 (рис. 12.8) предназначена для подогревания в наплитных котлах и поддержания в горячем состоянии первых и вторых блюд при отпуске их в столовых.

Электрическая мармитная плита имеет вид открытого ирилавка, в нижней части которого на каркасе установлены три электрические конфорки 4. Основанием прилавка служит рама с облицовкой. В верхней части прилавка на кронштейнах закреплена полка 6 для установки тарелок.

На каждую конфорку для ее включения и выключения имеются пакетные выключатели, которые могут быть установлены на любую из трех степеней нагрева: сильный, средний и слабый. Таким образом, мощность конфорки регулируется на режимы в соотношении $4: 2: 1$. Устанавливается плита непосредственно на пол и работает от трехфазной сети переменного тока.

Рис. 12.7. Электрические плиты:
B
а - ЭП-7; 6 - ЭП-8: в - ЭП-А

Рис. 12.8. Электрическая ппита мармитная ЭПМ-5:
а - вид слева; б - вид сверху: 1 - рама; 2 - вводный щиток; 3 - переключатепь; 4 - конфорка; 5 - стол; 6 - полка; 7 - втулка для подвода кабеля; 8 болт заземпения

Технические характеристики плиты электрической мармитной ЭПМ-5

Моцџность, кВт 3,75
Напряжение, В $380 / 220$
Аиаметр конфорок, мм 318
Габаритнье размеры, мм:
длина 1605
ширина 932
высота 1152
Macca, кr 160

Правила эксплуатации электрических плит. лица, обслуживающие плиты, а также лица, за которыми закрепленно данное оборудование, согласно приказу по предприятию общественного питания должны иметь образование но профилю работы, пройти обучение и сдать экзамены по правилам техники безопасности, пройти медицинский осмотр и иметь допуск к работе.

Перед началом работы необходимо проверить заземление, сапитарное состояние и техническое состояние плиты. При выполиянии этих работ рукоятки всех переключателей должны быть установлены в положение "0» (выключено).

Аля нагрева конфорок до рабочей температуры необходимо ус"ниовить ручки переключателей в положение «3» (сильный на-

грев). ППосле разогрева конфорок до требуемой температуры ручки переключателей устанавливают в положение "2" (средний нагрев) или «1» (слабый нагрев) согласно требованиям технологического режима и помещают на конфорки наплитную посуду с обрабатываемой продукцией.

При эксплуатации плит необходимо особое внимание уделять жарочной поверхности, которая должна быть ровной, гладкой, без трещин и находиться на одном уровне с бортовой поверхностью. Не допускать, чтобы на нагретую жарочную поверхность попадали капли воды, жира, конденсата с крышек посуды, так как при этом она может потрескаться. Во избежание этого посуду необходимо заполнять не более чем на 80% объема.

Аля лучшей передачи теплоты от конфорки наплитная посуда должна иметь ровное дно и плотно прилегать к поверхности конфорки. Использование наплитной посуды с неровным дном увеличивает продолжительность приготовления пищи, ухудшает ее качество и снижает КПД плиты, поэтому размеры наплитной посуды должны соответствовать размерам конфорки.

Аля нагрева жарочного шкафа переключатели верхних и нижних нагревателей устанавливают в положение "3» и после разогрева шкафа лимб терморегулятора устанавливают на отметку соответствующей температуры и только потом производят загрузку камеры продуктом.

После окончания работы на электрической плите нужно обязательно отключить все конфорки и жарочный шкаф соответствующими переключателями, а также отключить электроплиту от электрической сети.

После остывания плиты проводят санитарную обработку конфорок, поддона, противней и жарочного шкафа.

12.3. ПЛИТЫ ГАЗОВЫЕ

Плита газовая секционная ПГС-2MA (рис. 12.9) предназначена для приготовления пищи на газифицированных предприятиях общественного питания. Она состоит из каркаса, на котором уста́новлен чутунный настил двух конфорок. Снаружи каркас облицован металлическими эмалированными листами. Под облицовкой проложена теплоизоляция $3,6,11$.

Рабочая поверхность плиты выполнена из двух плит (настилов), изготовленных из чугуна специальных марок, под каждой конфоркой установлена односопловая газовая горелка 10. Газовая

206

горелка шкафа находится под подовым листом. Нижний лист плиты, расположенный под горелкой шкафа, имеет отверстия с заслонкой для поступления вторичного воздуха. Жарочный шкаф 8 иредставляет собой сварной короб из листовой стали, в котором установлены направляющие для противней.

Рис. 12.9. Плита газовая секционная ПГС-2МА:
я - вид справа; б - вид сзади: 1 - ножка; 2-зеркало; З, 6 и 11 - теплоиэоляция; 4 - регупятор первичного воздуха; 5 - эапальник горелки шкафа; 7 - под жарочного шкафа; 8 - жарочный шкаф; 9 - дверца жарочного шкәфа: 10 - горелка настила; 12 - жарочный настил; 13 - пусковая кнопка; 14 и 19 - блоки автоматики безопасности: 15 - дымоход; 16 - регулятор первичного воздуха горепки жарочного настила; 17 - запальное окно; 18 - вытяжнои патрубок; 20 - кран горелки жарочного шкафа; 21 - гаэопровод

Таблица 12.2. Возможные неисправности газовых плит, их причины и способы устранения

Неисправность	Причина	Способ устранения
Пламя горелки желто- красное, коптит	Недостаточное пос- тупление первич- ного или вторичного воздуха	Увеличить подачу первичного или вторичного воздуха
Пламя горелки отрывает- ся и горит с шумом	Избыток первичного воздуха	Уменьшить подачу первичного воздуха
Пламя горелки неравномерное	Засорена горелка	Отключить горелку, дать ей остыть и прочистить
Газ горит плавающим пламенем	Недостаточная тяга	Увеличить тягу
При выключении крана на горелке остаются ма- ленькие язычки пламени	Неисправен кран	Заменить кран

С левой стороны в средней части каркаса установлен газоход, который разделен на три канала, обеспечивающих независимую вытяжку продуктов сгорания от каждой из трех горелок. Спереди жарочный шкаф закрыт дверцей 9, которая плотно прилегает к раме плиты.

Правила эксплуатации газовых плит. Перед включением плиты, проводят проверку санитарно-технического состояния, проветривают помещение и проверяют тягу в газоходе. Затем открывают газовый кран на газопроводе перед плитой и зажигают запальник к насадке и плавно открывают газовый кран горелки. После воспламенения газа у насадки горелки регулируют подачу первичного воздуха, добиваясь, чтобы пламя имело голубовато-зеленоватый цвет. Запрещается оставлять зажженную плиту без присмотра; периодически через смотровое окно следует контролировать правильность сжигания газа по цвету пламени.

Возможные неисправности, возникающие при эксплуатации газовых плит, и способы их устранения приведены в табл. 12.2.

После окончания работы отключают подачу электропитания и, когда плита остынет, проводят ее санитарную обработку.
208

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какими приборами и в каком соотношении регупируется мощность конфорок электроплит?
2. Как можно уменьшить расход электроэнергии и увеличить срок службы конфорок при работе с электрическими плитами?
3. Перечислите требования техники безопасности при приготовлении на электрических плитах.
4. Назовите требования техники безопасности при приготовлении на газовых плитах.
5. Для каких целей предприятия общественного питания оснащают секционным модулированным оборудованием?

Главa 13

ВОДОГРЕЙНОЕ ОБОРУДОВАНИЕ

13.1. КЛАССИФИКАЦИЯ ВОДОГРЕЙНОГО ОБОРУДОВАНИЯ

Основными видами водогрейных аппаратов являются кипятильники и водонагреватели.

Горячая вода и кипяток используются на предприятиях общественного питания для различных технологических и санитарнотехнологических нужд.

Горячая вода требуется при выполнении таких технологических операций, как ошпаривание, бланширование, тепловая обработка овощей и картофеля, а также для мойки продуктов, посуды, полов и др.

Применение кипятка в технологических процессах позволяет сократить продолжительность процесса доведения изделий до кулинарной готовности и полнее сохранить биологически ценные вещества в продуктах. Например, если при варке закладывать картофель в холодную воду, то в нем разрушается 35% витамина С, а если в кипяток - всего 7%.

Кипяток используется при варке овощей, сосисок, пельменей, заварке чая, кофе, а также для стерилизации посуды и столовых приборов. Поэтому на предприятиях общественного нитания требуется большое количество горячей воды и кипятка, что вызывает необходимость использования раздичных видов водогрейного оборудования.

Водогрейное оборудование классифицируется по следующим признакам:

- по виду получаемого конечного продукта - кипятильники и водонагреватели;
- виду энергоносителя - твердотопливные, паровые, газовые, электрические;
- принципу действия - аппараты периодического и непрерывного действия;
- степени автоматизации - автоматизированные, полуавтоматизированные и неавтоматизированные;
- специфическим условиям эксплуатации - судовое оборудование, оборудование для вагонов-ресторанов.

Водогрейное оборудование на предприятиях общественного иитания является одним из энергоемких тепловых аппаратов, поэтому повышение эффективности его работы, снижение расхода энергетических ресурсов зависит от рационального режима работы на нем и выполнения правил эксплуатации.

13.2. КИПЯТИЛЬНИКИ

Кипятильники независимо от вида обогрева и конструкции изготовления предназначены для приготовления кипятка для нужд предприятия общественного питания. По принципу работы кипятильники подразделяются на аппараты периодического и непрерывного действия.

Кипятильники периодического действия являются наливными. В этих кипятильниках процесс приготовления и разбор кипятка отделены друг от друга по времени: воду доводят до кипения, после чего нагрев прекращают, кипяток разбирают. Промышленность выпускает наливной кипятильник КМ-60М, работающий на твердом топливе, самовары разной вместимости и кипятильники самоварного типа. Исгочником теплоты для них служат твердое топливо, электричество и газ.

Киьятильники непрерывного действия работают по принципу сообщающихся сосудов, сокращенно они обозначаются на шильдиках (фирменных знаках) КНА. По принципу действия и устройству они одинаковы, а различаются между собой производительностью, габаритными размерами и конструкцией греющей камеры.

Кипятильник непрерывного действия электрический КНЭ-25 настольного исполнения (рис. 13.1) состоит из корпуса, питательной коробки 11, кипятильного сосуда 5 и сборника кипятка 8.

В питательной коробке имеется поплавковое устройство 9, с номоцью которого в ней поддерживается постоянный уровень

Рис. 13.1. Эпектрический кипятильник КНЭ-25:

1 - сигнальная трубка; 2 - автоматическое пусковое устройство; Зөводный щиток; 4 - питатепьная трубка; 5 - кипятильный сосуд: 6 контакты; 7 - корпус; 8 - сборник кипятка; 9 - поплавковое устройство; 10 - крышка: 11 - питательная коробка; 12 - переливная трубка; 13 - сигнапьные лампы; 14 - разборный кран; 15 - ТЭН; 15 - питающий трубопровод; 17 сливной патрубок с пробкой

воды, поступающей по питающему трубопроводу 16 из водопровода.

В кипятильном сосуде установлены ТЭНы 15, переливная трубка 12 и сливной патрубок с пробкой 17.

Сборник кипятка имеет разборный кран 14 , крышку и отверстие, через которое кипяток при переполнении сборника кипятка попддает в питательную коробку.

Вода в переливной трубке по закону о сообщающихся сосудов устанавливается на том же уровне, что и в питательной коробке, так как они соединены между собой питательной трубкой 4. При нарушении нормальной работы кипятильника кипяток удаляется по трубке в канализацию. На корпусе кипятильника установлены две сигндльные ламиы 13 , оповещающие о подаче напряжения в кипятильник и работе ТЭНов.

Блок автоматики установлен в нижней части корпуса и служит для защиты от "сухого хода», т.е. невозможности включения ТЭНов при отсутствии воды. Аля защиты сборника кипятка от переполнения в нем установлены нижний и верхний электорды 6 , которые в зависимости от уровня воды включают и выключают нагрев ТЭНов.

Процесс притотовления кипятка заключается в следующем: холодная вода из водопровода подается в питательную коробку, имеющую клапанно-поплавковое устройство, из нее по питательной трубке поступает в кипятильный сосуд и переливную трубку. Ког-

лд уровень воды в переливной трубке и пигательной коробке уравиивается и достигает требуемого уровня, поплавковое устройство перекрывает клапаном подачу воды из водопровода. При включенпом кипятильнике ТЭНы нагревают воду и доводят ее до кипения.

Образующиеся при этом пары поднимаются по переливной трубке, увлекают за собой часть кипящей воды, которая выплескиваясь и ударяясь об отражатель, собирается в сборнике кинятка. Уровень воды в кипятильной коробке и переливной трубке поиижается. Поэтому поплавковое устройство опускается, открывает клапан и в нижнюю часть кипятильного сосуда поступает вода из водопровода. Из переливной грубки кипяток выбрасывается в сборник кипятка периодически, разбирать же кипяток через кран можно непрерывно.

Кипятильник устанавливается на тиновом металлическом столе или подставке, в которых предусмотрены отверстия для водопроводной трубы, слива воды в трап, а также для электрического кабеля, юодключаемого к магнитному пускателю автоматического пускового устройства 2. Заземляющий провод подводится к заземляющему болту, находящемуся на корпусе кипятильника.

Технические характеристики кипятильника электрического непрерывного действия КНЭ-25

Производительность, ^/ч .. 25
Мощность, кВт ... 3
Напряжение, В ... 380/220
Продолжительность нагрева воды до темлнературы
100° С. мин .. $10 . . .15$
Вместимость сборника кииятка, дм ${ }^{3}$....................................... 7,6
Габаритные размеры, мм:
длина ... 427
ширина .. 303
внісота .. 622
Macca, кr ... 16,5
Кипятильник КНЭ-25 работает от трехфазной сети переменно(\%) тока. Модифицированный кипятильник КНЭ-25М отличается (т базового тем, что его системы защиты от "сухого хода" и подлержания уровня кипятка в сборнике выполнены на герконах.

Электрические кипятильники КНЭ-50 и КНЭ-100 аналогичны кипятильнику КНЭ-25, но отличаются от него габаритными размерами и производительностью.

Правила эксплуатации кипятильника электриリеского пепрерывного действия КНЭ-25. Перед началом работы проверяют санитарное и техническое состояние ки-

Таблица 13.1. Возможные неисправности электрического кипятильника, их причины и способы устранения

Неисправиость	Причина	Способ устранения
Снижена производительность кипятильника	Неисправны ТЭНы	Заменить ТЭНьт
Из сливной трубки вытекает холодная вода	Неправильно работает питательный клапан	Отрегулировать работу питательното клапана
Из сливной трубки вытекдет горячая нода	Не работает верхний электрод сборника кипнтильника	Заменить электрод
Кипятильник включается после оголения верхнего электрода сборника кипятка	Нижний электрод покрыт накипью	Очистить или заменить электрод

пятильника, особое внимание обращают на заземление и его исправность.

Затем открывают вентиль на водопроводе и включают кипятильник в работу. При этом загорается красная лампочка, сигнализирующая подачу напряжения, и зеленая лампа, которая свидетельствует о том, что кипятильник заполнен водой, ТЭНы находятся под напряжением и нагреваются.

После окончания работы вентиль на водопроводной трубе закрывают. Наружную поверхность кипятильника протирают влажной тканью, хромированные и полированные поверхности фланелевой тканью с порошком мела.

Возможные неисправности, возникающие при эксплуатации электрических кипятильников, и способы их устранения представлены в табл. 13.1.

Кипятильник газовый КНГ-200 (рис. 13.2) непрерывного действия служит для приготовления и одновременного или последовательного отпуска горячей воды или кипятка.

Технические характеристики кипятильника газового КНГ-200

Производительность, $л / ч$ 200
Продолжительность нагрева воды до температуры $100^{\circ} \mathrm{C}$, мин20
Габаритные размерьт, мм:
длина 540
ширина 540
высота 1360
Macca, кr 54

Он цредставляет собой сосуд цилиндрической формы, который состоит из полого постамента, водонагревателя 5, кипятильного резервуара 6, сборника кипятка 8, камеры сгорания и системы l'aзоходов.

В постаменте расположена газовая инжекторная горелка, над которой находится цилиндрическая камера сгорания. Сводом камеры является дно кипятильного резервуара.

Водонагреватель представляет собой двустенный цилиндр, межстенное пространство которого заполнено водой, а внутренний объем образует камсру сгорания. Верхняя часть водонагрева'Реля является питательной коробкой, изнутри обогреваемой ухоляџими газами. Коробка снабжена клапаном, регулирующим подачу воды, уровень которой поддерживается поплавковым устройством 15.

Внутри водоначревателя установлен кипятильный резервуар. Сборник кипятка представляет собой тонкостенный цилиндрический сосуд, вставленный внутрь резервуара. Зазор между стенка-

Рис. 13.2. Кипятипьник газовый КНГ-200:
1 - стабипизатор; 2 - дымовой патрубок; 3 - крышка; 4 - переливная грубв; 5 - водонагреватель; 6 - кипятипьный резервуар; 7 - кран разбора горячей воды; 8 - сборник кипятка; 9 - соединительный патрубок; 10 - кран разбора кипятка: 11 - топочное устройство; 12 - патрубок попного спива воды: 13 - камера гаповой горелки: 14 - ребра; 15 - поinавковое устройство

215

ми кипятильного резервуара и сборника кипятка образует переливной трубой 4 . Стенки водонагревателя и кипятильного резервуара имеют ребра 14, увеличивающие поверхность нагрева. Сверху кипятильный резервуар закрывается крышкой 3.

В нижней части сборника кипятка установлен кран для разбора кипятка 10, в верхней части водонагревателя - кран разбора горячей воды 7.

Перемещение продуктов сгорания газа по всей высоте аппарата по газоходам между стенками водонагревателя и кипятильного резервуара позволяет уменьшить температуру уходящих продуктов сгорания и увеличить количество теплоты, передаваемой от продуктов сгорания, что повышает КПД до 85%.

Кипятильник снабжен автоматикой безопасности (АБ), обеспечивающей защиту газогорелочного устройства при поступлении газа в камеру сгорания, от работы при отсутствии тяги и понижения давления воды и газа в сети.

В водонагревателе вода сначала нагревается до температуры $60 \ldots 70^{\circ} \mathrm{C}$ и через специальный кран может отбираться на различные санитарио-технологические нужды.

Затем вода доводится до кипения в кипятильном резервуаре. Из кипятильного резервуара кипяток по переливной трубе поступает в сборник кипятка и через кран разбора кипятка может отбираться для приготовления пищи.

Правила эксплуатации кипятильника газового КНГ-200. Перед включением газового кипятильника проверяют:

- открытие вентиля на подводящей водопроводной трубе и заполнение кипятильника водой;
- правильность регулирования питательного клапана по уровню воды в переливной трубе;
- наличие остатка воды в сборнике кипятка;
- тягу с помощью полоски тонкой бумаги;
a утечку газа по запаху.
При включении газового кипятильника в работу сначала открывают вентиль на подводяцем газопроводе и у переносного запальника, зажигают переносной запальник и вносят его в камеру сгорания. Затем нажимают кнопку прибора автоматики, зажигают стационарный запальник, прикрывают регулятор первичного воздуха и открывают кран горелки. По цвету пламени регулируют подачу воздуха.

216

При работе кипятильника регулярно отбирают кипяток. При :том первые порции сливают, так как они могуг быть некипячеными.

Если потребность в кипятке отпала, необходимо уменышить подачу газа к горелке.

В процессе работы кипятильника не следует допускать переполнение сборника кипятка, признаком чего служит появление горячей воды из сигнальной трубки.

В случае, если из сигнальной трубки будет вытекать холодная вода, нужно отрегулировать питательный кран или поплавковое устройство.

После окончания работы отключают подачу газа, сливают кипяток из сборника кипятка и протирают наружную поверхность кипятильника сухой тканью.

13.3. ВОДОНАГРЕВАТЕЛИ

Водонагреватель электрический НЭ-1А (рис. 13.3) предназначен для нагрева воды до температуры $96^{\circ} \mathrm{C}$, используемой для обработки столовой посуды и приборов. Он представляет собой цилиндрический стальной резервуар с герметично закрываюшейся крышкой. Внутри резервуара на крышке 7 установлены ТЭНы 4. Реэервуар находится внутри предохранительного стального кожуха 11, который снаружи нокрашен белой эмалью. Между ними проложена теплоизоляция 9 - минеральная вата.

Аля подачи воды из водопроводной сети в водонагреватель 10 и разбора горячей воды резервуар снабжен патрубками длн присоединения к водопроводу 12 и для отвода горячей воды 8. Один находится в верхней части, другой - в нижней. На кожухе водоНагревателя укреплен шкаф мяя электрооборудования, в котором установлены пусковая аппаратура и приборы автоматики.

Автоматическое регулирование температуры воды осуществляюсся термосигнализатором TC-100 и магнитным нускателем. Термосигнализатор имеет три стрелки - две задающие и одну укаиывающую. Задающие стрелки термосигнализатора устанавливакт: Желтую на минимальную, красную - на максимальную темпсратуру нагрева воды. На указывающей черной стрелке установлсны контакты. При нагреве воды указывающая стрелка, переАиигаясь по шкдле и соединяясь контактами с желтой стрелкой, иключает водонагреватель в работу, а соединяясь с контактами

Рис. 13.3. Водонагреватель электрический НЭ-1А:
1 - термосигнализатор; 2 - сигнальная пампа; З- пульт автоматического управления; 4 - ТЭН; 5 - съемная крышка; 6 - датчик термосигнализатора; 7 - устройство для креппения ТЭНов; 8 - патрубок для отвода горячей воды; 9 - теплоизопяция; 10 - водонагреватель; 11 - кожух; 12 - патрубок для присоединения к водопроводу

красной стрелки - выключает водонагреватель. На трубопроводе холодной воды установлена запорная и регулирующая арматура. Водонагреватель имеет защиту ТЭНов от "сухого хода».

Водонагреватель электрический НЭ-1Б имеет конструкцию, аналогичшую конструкции водонагревателя $\boldsymbol{H}-1 А$, но меньшую производительность, мощнос'ть и габаритные размеры (табл. 13.2).

Правила эксплуатации электрических водонагревателей НЭ-1А и НЭ-1Б. Перед началом работы ироверяют санитарно-техническое состояние электрического водонагревателя. Особое внимание следует обратить на надежность заземляющего устройства и его техническое состояние.

Далее открывают водопроводный вентиль и проверяют заполнение водой водонагревателя, включив водоразборный кран. Если водонагреватель заполнился водой, включают его в работу путем нажатия кнопки «Пуск».

В период работы водонагревателя периодически контролируют процесс нагрева воды и исправность его работы.

218

Таблица 13.2. Технические характеристики водонагревателей H3-1А и НЭ-15

Пардметр	Марка водонагревателя	
	HЭ-1^	НЭ-1Б
Производительность, л/ч	160	80
Температура нагретой воды, ${ }^{\circ} \mathrm{C}$	90... 95	90... 95
Вместимость резервуара, дм 3	33	25
Мощность, кВт	18	12
Напряжение, В	380/220	
Число ТЭНов, шт.	9	6
Габаритныє размеры, мм: длина ширина высота	$\begin{aligned} & 605 \\ & 385 \\ & 675 \end{aligned}$	$\begin{aligned} & 605 \\ & 385 \\ & 600 \end{aligned}$
Macca, кr	65	60

После окончания работы отключают водонагреватель кнопкой "Стоп", закрывают вентиль на нодводящей водопроводной трубе и проводят санитарную обработку аппарата.

Воgонагреватель газовый АГВ-80 (рис. 13.4) состоит из вертикального цилиндрического рабочего резервуара и трубы газохода, внутри которого размещен турбулизатор. Над газоходом расположен стабилизатор гяги 6, который ирисоединяется к дымоходу.

Рабочий резервуар изготовляется из листовой оцинкованной стали и рассчитан на давление воды не более 600 кПа. Водона'реватель помещен в кожух 4 , покрытый эмалью. Пространство между кожухом и стенками резервуара заполнено теплоизоляциคй 3.

В крышку рабочего резервуара вмонтированы два патрубка, один из которых служит гильзой для установки термометра 7 , лругой - для выхода горячей воды. Водонагреватель обогревается инжекторной пламенной горелкой с кольцевой многоструйной ॥асддкой и снабжен автоматикой регулирования и безопасности. Аитоматическое регулирование осуществляется терморегулятором 9 , который обеспечивает регулирование температуры воды в иределах $40 \ldots 80^{\circ} \mathrm{C}$. Установка терморегулятора на определенную

Рис. 13.4. Водонагреватель газовый АГВ-80:

1 - дверца камеры сгорания; 2 - патрубок для присоединения к водопроводной трубе: З- теплоизоляция; 4 - кожух; 5 - патрубок для выхода горячей воды; 6 - стабилизатор тяги; 7 - термометр; 8 - кран на подводящем газопроводе: 9 - терморегулятор: 10 - кран перед горелкой; 11 - стационарный запарник; 12 - регулятор первичного воздуха

температуру срабатывания осуществляется регулирующим винтом.

На водопроводной трубе, соединенной с водонагревателем, усганавливается вентиль для отключения от водопроводной сети.

Водонагреватель газовый АГВ-120 (рис. 13.5) имеет конструкцию и принцип работы, аналогичные устройству водонагревателя АГВ-80 (табл. 13.3), но отличается в основном габаритными размерами и системой автоматики, представляющей собой электромагнитную систему безопасности и манометрический терморегулятор, смонтированные в едином блоке.

Правила эксплуатации водонагревателей АГВ-80 и АГВ-120. Перед началом работы с газовым водонагревателем

220

Рис. 13.5. Водонагреватепь газовый АГВ-120:
1 - регулятор воздуха; 2- стационарный запальник; 3 - терморегулятор; 4 термометр; 5 - патрубок для выхода горячей воды; 6 - газопровод к горелке; 7 патрубок для присоединения к водопроводной трубе

Таблица 13.3. Технические характеристики водонагревателей газовых АГВ-80 и АГВ-120

Параметр	Марка водонагревателя	
	АГв-80	АГв-120
Вместимость, дм 3	80	120
Продолжительность разогрева воды, мин	45	75
Количество горелок, шт.	1	1
Габаритные размеры, мм: диаметр высота	400	460
Масса, кг -	1550	1600

проверяют тягу в дымоходе, вентилируют газовую горелку, открыв регулятор воздуха 1 , и только потом открывают вентиль на подводящей водопроводной трубе. В водонагревателях, имеющих терморегулятор 3, перед пуском их в работу задают необходимые пределы температуры нагрева горячей воды.

Убедившись, что водонагреватель заполнен водой, производят розжиг аппарата переносным запальником, предварительно нажав на пусковую кнопку клапана автоматики безопасности. После зажигания стационарного запальника держат кнопку нажатой, затем отпускают и обязательно проверяют наличие факела стационарного запальника.

Далее открывают кран основной горелки и процесс горения регулируют регулятором воздуха по цвету пламени. В процессе работы водонагревателя постоянно контролируют горение газа и исправность работы автоматики.

Перед окончанием работы закрывают кран основной горелки и кран на подводящем газопроводе перед водонагревателем.

После окончания работы закрывают вентиль на водопроводной трубе. Наружную поверхность аппарата протирают влажной тканью.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие кипятильники используются на предприятиях общественного питания?
2. Начертите принципиальную схему кипятильника КНЭ-25.
3. Как влияет уровень воды в переливной трубке на процесс попучения кипятка?
4. Укажите причину выхода холодной воды из сигнапьной трубки кипятильника.
5. Обьясните, как включить в работу кипятильник КНГ-2ОО.
6. Перечиспите требования техники безопасности, которые необходимо соблюдать при работе с кипятильниками.
7. Перечислите требования техники безопасности, которые необходимо соблюдать при работе с электрическими и газовыми водонагревателями.

Глава 14

ОБОРУДОВАНИЕ ДЛЯ РАЗДАЧИ ПИЩИ

14.1. КЛАССИФИКАЦИЯ ОБОРУДОВАНИЯ ДЛЯ РАЗДАЧИ ПИЩИ

Оборудование для раздачи пищи на предприятиях общественного питания предназначено для кратковременного хранения и демонстрации продукции, хранения столовой посуды, комплектации обедов и их отпуска потребителям.

Большой ассортимент вырабатываемой продукции (первые, вторые блюда, закуски, напитки), различия ее по форме, размерам, физическим свойствам, температуре отпуска и способам подачи требуют при комплектации обедов большого количества разнообразного оборудования.

Аля улучшения обслуживания потребителей, повышения производительности труда и экономии производственных процессов оборудование группируют, образуя линии комплектации и раздачи обедов.

Способы размещения оборудования в линиях раздачи обедов зависят от вида предприятия, его пропускной способности, а также от ассортимента реализуемой продукции.

Раздаточные линии комплектуются из различных видов оборулования: вспомогательного теплового, немеханического и транснортирующего.

K вспомогательному тепловому оборудованию относятся мармиты, тепловые шкафы, тепловые стойки и термостаты. Главное их назначение - поддержание готовой продукции в горячем состоянии и ее кратковременное хранение.

K немеханическому оборудованию относятся столы для установки посуды, термостатов и контрольно-кассовых аппаратов.

К транспортирующему оборудованию линий раздачи относятс'я передвижные тележки для посуды и пријоров.

14.ᄅ. МАРМИТЫ

В настоящее время на предприятиях общественного питания используются стационарные электрические мармиты следующих тигов:

МСЭСМ-3, МСЭ-3К для кратковременного хранения первых блюд:

МСЭСМ-50, МСЭСМ-50К, МСЭСМ-55, МСЭСМ-60, МСЭСМ-80 и МСЭСМ-110 для кратковременного хранения вторых блюд, гарниров, соусов и других кулинарных изделий;

МСЭ-55, МСЭ-55К, МСЭ-80, МСЭ-80К, МСЭ-110 и МСЭ-ПОК для кратковременного хранения вторых блюд в мармитницах и противней с блюдами без соуса в тепловом шкафу;

МСЭ-84 для кратковременного хранения в горячем состоянии супов, соусов, соусных блюд и гарниров;

МНЭ-22, МНЭ-45 дяя кратковременного хранения первых и вторых блюд.

Мармит стационарный электрический секционный моgулированный МСЭСМ-3 (рис. 14.1) предназначен для кратковременного хранения в горячем состоянии первых блюд в наплитных котлах.

Рис. 14.1. Мармит стационарный эпектрический секционный модулированный МСЭСМ-3:
а - общий вид; 6 - вид в разрезе: 1 - рама; 2 - панель управления; 3 карка: 4 - нижний стоп; 5 - конфорка; 6 - верхний стол; 7 - раздәточная попка: 8 - полка для подносов

Технические характеристики мармита стационарного электрического секционного модулированного МСЭСМ-3

Количество конфорок, шт 3
диаметр конфорок, мм 318
Мощность, кВт 3.75
Напряжение, В $380 / 220$
Продолжительность разогрева рабочей поверхности конфорок, мин 40
Габаритные размеры, мм: мина 1680
ширина 800
высота 530
Масса, кг 165

Мармит МСЭСМ-3 состоит из сварной рамы 1, к которой крепятся каркас 3 и два стола 4,6 . Верхний стол 6 имеет раздаточную полку 7, а нижний стол 4 - три круглые электрические конфорки 5. Включение мармита и рег‘улирование мощности конфорок осуществляется четырехпозиционным переключателем, установленном на панели управления 2.

Мармит устанавливается на ножки, которые регулируются по высоте, и имеет полку для подносов, жестко укрепленную на верхнем столе. На передней панели установлена розетка для подключения тепловых аппаратов (для нагрева тарелок, которые находятся на тележке с выжимным устройством).

Правила эксплуатации мармита МСЭСМ-3. Перед работой с мармитом необходимо ознакомиться с элементами его управления, а также с инструкцией по эксплуатации. Обслуживающий персонал должен пройти специальное обучение и инструктаж по технике безопасности.

В процессе эксплуатации пеобходимо выполнять следующие יребования:

- следить за исправностью заземляющего устройства;
- контролировать санитарно-техническое состояние мармита и при замеченных неисправностях отключать его от сети; вновь включать толлко после устранения всех неисправностей;
- категорически запрещается включать мармит в электрическую сеть без заземления и оставлять его без присмотpa;
- не оставлять на длительное время конфорки, не загруженные продуктами;
- для проведения санитарной обработки или ремонта мармита обязательно отключить его от электросети.

Аля разогрева конфорок до рабочей температуры необходимо установить ручки переключателей в положение «3» (сильный нагрев). После разогрева конфорок ручки переключателей следует установить в положение «2» (средний нагрев) или «1» (слабый нагрев) согласно требованиям технологического режима.

Нужно следить за тем, чтобы на нагретые конфорки не попадала жидкость, так как при этом они могут потрескаться. Кроме 'гого, жидкость может нарушить электроизоляцию конфорки. Попадание жидкости на токоведущие элементы может привести к короткому замыканию.

Выключать конфорки следует за несколько минут до окончания работы.

Мармит МСЭ-3К отличается от мармита МСЭСМ-3 габаритными размерами и отсутствием розетки на панели управлсния.

Мармит стационарный электрический секционньй моgулированный МСЭСМ-50 (рис. 14.2), а также мармиты МСЭСМ-50К, МСЭСМ-55, МСЭСМ-60, МСЭСМ-80, МСЭСМ-110 предназначены для кратковременного хранения в горячем состоянии вторых блюд, гарниров, соусов и мя послелующей реализации продукции на линии раздачи.

Мармиты имеют одинаковую конструкцию и отличаются формой, количеством и суммарной вместимостью мармитниц, а также габ́аритньми размерами и потребляемой мощностью. Устанавливаются они на раздаточных линиях и линиях самообслужива-

Рис. 14.2. Мармит стационарный электрический секционный модулированный МСЭСМ-50:
1- ножка; 2 - основание; 3 - дверца: 4 - панепь управления; 5 - вентиль подвода воды; 6 - мармитница; 7 - роэетка У94-0; 8 - сигнальная красная лампа (отключение ТЭНов): 9 - пакетный выключатель ПВЗ-25; 10 - сигнальная эеленая лампа; 11 - переключатель ТПКП

ния. Блюда хранятся в мармитницах, обогреваемых насыщенным ॥яром. Форма мармитниц выполнена в виде сосудов прямоуголь!ぃй или цилиндрической формы разной вместимости в зависимо("'и от типа мармита.

Использование в качестве теплоносителя пара вместо воды 'иачительно улучшило теплотехнические данные аппаратов, сократило продолжительность их разогрева, привело к равномерному обогреву мармитниц по высоте, улучшило условия санитарной »бработки аппаратов.

Нагрев воды в мармитах осуществляется ТЭНами. Защита ГЭНов от «сухого хода» обеспечивает реле давления, которое, срабатывая, отключает ТЭНы парогенератора от напряжения смги, и на панели управления загорается сигнальная красная лампа.

Блюда без соуса хранятся на противнях в тепловом шкафу, устновленном в нижней части мармита. Тепловой шкаф обогреваегся ТЭНами, регулирование мощности которых осущесгвляется накетным переключателем.

Мармиты стационарные электрические МСЭ-ПОК, МСЭ110, МСЭ-80К, МСЭ-55, МЭС-84 (рис. 14.3) имеют конструкцию, वналогичную конструкции мармита МСЭСМ-50. Главное отличие заключается в размерах, наличии укрепленной на столе полки для тарелок и стола-полки мля полносов. Эти мармиты различаются мощностью, количеством и вместимостью мармитниц.

Мармить настольные электрические МНЭ-22, МНЭ-45 (рис. 14.4) предназначены для сохранения в горячем состоянии нервых и вторых блюд. Используются эти мармиты на предприятиях с барным обслуживанием. Корпус мармита имеет стол с прямоугольными мармитницами двух типоразмеров. Конструкция っбоих мармитов аналогична. Обогрев мармитниц осуществляется

Рис. 14.3. Мармит стационарный электрический МСЭ-84:
1 - емкости; 2 - стол; 3 - панель упраөления; 4 - сигнальная лампа; 5 - ручка датчика-реле температуры; Б - метаплоконструкция стопа пинии рнадачи

227

Рис. 14.4. Мармит настольный электрический МНЭ-45:
1 - стол; 2 - мармитница; З-крышка мармитницы; 4- поддон; 5 - ТЭН; Е основание; 7 - ножка; 8 - терморегулятор

воздухом, нагревасмым ТЭНами, установленными под съемным поддоном. Заданный температурный режим мармита подлерживается автоматически с помощью терморегулятора. Различаются между собой эти мармиты только вместимостью мармитниц, потребляемой мощностью и габаритными размерами.

Мармиты переgвижные электрические МЭП-6, МЭП-20, МЭП-28, МЭП-35, МЭП-60 (рис. 14.5) имеют то же назначение, устройство и принцип действия передвижных мармитов, что и стационарные.

Мармиты расположены на раме, к которой крепятся стальные эмалированные облицовки. Стол, изготовленный из нержавеющей стали, имеет гнездо для установки мармитниц, которые обочреваются воздухом, нагреваемым ТЭНами. Подкьючают мармит к электрическим розеткам с помощью трехштыревой вилки. Включение ТЭНов мармита производится выключателем, после чего загорается ситнальная лампа.

Ходовая часть мармитов состоит из пары поворотных и пары неповоротных обрезиненных колес и обладает хорошей маневренностью.

Стойка раздаточная тепловая электрическая секционная моуулированная СРТЭСМ (рис. 14.6) предназначена для подогрева тарелок и готовых блюд на раздаче.

228

Технические характеристики стойки раздаточной тепловой электрической секционной модулированной СРТЭСМ
Объем тенлового шкафа, м ${ }^{3}$ 0,4
Количество полок в шкафу, іІт. 12
Мощность, кВт 2
Напряжение, В 220

Стойка изготовляется из нержавеющей стали в виде стола 4 с -лддкой полированной крышкой. Под верхней поверхностью

Рис. 14.5. Мармиты электрические передвижные:
" - мармит МЭП-2В, б - мармит МЭП-60; в - мармиты для вторых блюд: 1 и З-общий вид; 2 - эскиз МЭП-БО; 4 - эскиэ МЭП-2; 5 - эскиз МЭП-2О; (i зскиз МЭП-З5

Рис. 14.6. Стойка раздаточная СРТЭСМ:
1 - рама; 2 - тепловой шкаф; 3 - панепь управпения; 4 - стол; 5 - ниша;
6-полка; 7-ТЭН

стойки находится тепловой шкаф 2, в котором имеются съемные решетчатые полки для тарелок. Тепловой шкаф разделен на четыре отсека, каждый из которых имеет три полки и закрывается створчатыми дверками. Стойка обогревается с помощью ТЭНов 7, коммутация которых для изменения температурного режима осуществляется с помощью пакетных переключателей, а мощность ТЭНов регулируется пакетным выключателем. Обслуживание стойки может производиться с двух сторон. Стойка раздаточная тепловая работает от однофазной сети переменного тока частотой 50 Гц, напряжением 220 В.

Правила эксплуатации стойки СРТЭСМ. Перед началом работы проверяют санитарное и техническое состояние стойки. Затем внимательно проверяют надежность заземления.

Включение производят скачала на сильный нагрев, затем на средний и слабый. При включении ТЭНов загораются сигнальные лампы.

После окончания работы тепловую стойку отключают и проводят тщательную санитарную обработку.

230

14.3. ЛИНИИ САМООБСЛУЖИВАНИЯ

В настоящее время многие предприятия общественного пита৷ия работают по принципу самообслуживания и поэтому оборулуются линиями, состоящими из аппаратов, подогревающих или "хлаждающих отпускаемые блюда.

линия самообслуживания предназначена для раздачи первых и нюрых блюд, холодных закусок, молочнокислых продуктов, холодних и горячих напитков, сладких блюд и кондитерских изделий.

Экономическая эффективность линий самообслуживания обусловливается в основном возможностью механизации процессл выдачи комплексных обедов или отдельных блюд, что суще("тенно повышает производительность труда. В результате увеличивается пропускная способность торгового зала и сокращается иродолжительность обеденного перерыва.

Аинии самообслуживания выпускаются четырех исполнений:
 (ศабл. 14.1).

Таблица 14.1. Технические характеристики линии самообслуживания

Покдзатель	Марка линии			
	$\wedge C-A$	\wedge C-E	$\wedge C-B$	$\lambda C-\Gamma$
Мощность, кВт	5,89	6,52	7.15	5,89
Напряжение, В	380	380	380	380
Вместимость емкостей, л: мля первыг блюд Аля вторых блюд	$\begin{aligned} & 88 \\ & 84 \end{aligned}$	$\begin{aligned} & 148 \\ & 112 \end{aligned}$	$\begin{aligned} & 148 \\ & 144 \end{aligned}$	$\begin{aligned} & 88 \\ & 84 \end{aligned}$
Площадь противней тенловыгх шкафов, м ${ }^{2}$	2,04	2,04	3,06	2,04
Габаритные размеры, мм: мина пирина нысота	$\begin{aligned} & 8000 \\ & 1160 \\ & 1600 \end{aligned}$	$\begin{aligned} & 8800 \\ & 1160 \\ & 1600 \end{aligned}$	$\begin{aligned} & 9200 \\ & 1160 \\ & 1600 \end{aligned}$	$\begin{aligned} & 6600 \\ & 1160 \\ & 1600 \end{aligned}$
Масса линии, кг	960	1070	1150	740

Таблица 14.2. Комплекты оборудования линий самообслуживания

Оборудование	Обозначение	Алина, мм		
		$\lambda \mathrm{C}-\mathrm{A}$	лС-Б	$\wedge C-B$
Основное оборудование				
Прилавок-касса	$\wedge \mathrm{C}-1$	589	652	715
Прилавок-витрина холодильный	$\wedge C-2$	84	112	144
Прилавок для горячих напитков	$\wedge C-3$	6600	8800	9200
Мармит стационарный электрический	МСЭ-84	1160	1160	1160
Шкаф тепловой передвижной электрический	ШТПЭ-1	1600	1600	1600
Мармит передвижной	МП-28	740	1070	1150
Котел передвижной	КП-60	589	652	715
Тележка для столовых приборов	TПС-900	84	112	144
Тележка с выжимным устройством	$\begin{gathered} \text { TВГ--240 } \\ \text { TВT-240 } \\ \text { TBC-120-01 } \end{gathered}$	$\begin{aligned} & 6600 \\ & 1160 \\ & 1600 \end{aligned}$	$\begin{aligned} & 8800 \\ & 1160 \\ & 1600 \end{aligned}$	$\begin{aligned} & 9200 \\ & 1160 \\ & 1600 \end{aligned}$
Термостат электрический	TЭ-25	740	1070	1150
дополнительное оборудование				
Шкаф тепловой передвижной	ШТПЭ-1	84	112	144
Мармит передвижной	МП-28	1160	1160	1160
Тележка с выжимным устройством	$\begin{aligned} & \text { TBT-120 } \\ & \text { TBT-240 } \end{aligned}$	$\begin{gathered} 1600 \\ 740 \end{gathered}$	$\begin{aligned} & 1600 \\ & 1070 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1150 \end{aligned}$
Емкость для пищи	E $4 \times 100 \mathrm{~K} 4$	589	652	715

Все линии самообслуживания выпускаются в правом исполнении. Аля левого исполнения необходимо сделать их перекомпоновку в обратном порядке. Каждая линия, выпускаемая заводомизготовителем, комплектуется оборудованием в соответствии с габл. 14.2.

Производительность линий самообслуживания может быть увеличена в $2 . . .3$ раза при раздаче обедов с предварительной оплатой или при увеличении числа раздатчиц.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Опишите устройство, назначение и принцип работы мармита МСЭСМ-З.
2. В чем главные различия мармитов марки МНЭ-22 и МНП20?
3. Какие требования техники безопасности необходимо соблюдать при работе с мармитами?
4. Назовите виды линий самообслуживания и их наэначение.
5. Какое основное оборудование входит в комплект ЛС?
6. Какое допопнительное оборудование входит в комплект ЛС?

ГЛава 15

ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ

15.1. ОБЩИЕ СВЕДЕНИЯ О ХОЛОДИЛЬНОМ ОБОРУДОВАНИИ

Холод является прекрасным консервантом, замедляющим развитие микроорганизмов. Поэтому на предгриятиях об́щественного питания холод используют для хранения продуктов при низких температурах в камерах, шкафах, прилавках и витринах. При таком хранении вкусовыс качества продуктов и их внешний вид остаются почти без изменения. Понятие "холод" означает малое содержание теплоты в теле. Охлаждение - это отвод теплоты от тела, сопровождающийся понижением его температуры.

Различают естественное и искусственное охлаждение. При естественном охлаждении температура продуктов может быть понижена до температуры окружающего воздуха, а при искусственном достигают более низких температур.

На предприятиях общественного питания используют несколько способов искусственного охлаждения, в основе которых лежат процессы изменения агрегатного состояния вещества - плавление, испарение и сублимация.

Плавление - это процесс перехода вещества из твердого состояния в жилкое.

Кипением называется нагрев вещества и переход жидкости в пар. При кипении жидкого вещества верхние слои переходят в газообразное состояние.

Сублимация - это процесс перехода вещества при нагревании из твердого состояния в газообразное (минуя жидкую фазу).

Аля охлаждения наибольшее распространение получил процесс использования скрытой теплоты парообразования жидкостей, кипящих при низких температурах. Такие жидкости получили название холодильных агентов (хладагентов). Перенос теп-

лоты осуществляется в специальном устройстве, называемом хомодильной машиной.

Под эгидой ООН разработаны и подписаны два важных международных документа - Венская конвенция по охране озоново'о слоя (март 1985 г.) и Монреальский протокол по веществам, разрушающим озоновый слой, и дополнение к нему (Лондон, июнь 1990 г.), в которых определен график сокращения производс'ва и истребления ХФУ (хлорсодержащих углеродов).

В ноябре 1992 г. в Копенгагене на четвертом совещании сторон Монреальского протокола были приняты новые поправки к протоколу, ужесточающие график сокращения производства и потребления озоноопасных соединений по группе ХФУ.

Одним из кардинальных решений охраны озонового слоя является снижение или прекращение выпуска ХФУ с переходом на галогенуглероды, не оказывающие действия на озон. К таким сосдинениям относятся хладоны-22, -23, $-32,-125$ и другие, которые инертны к озону или обладают незначительной озоноразрушающей способностью вследствие того, что они либо содержат азот водорода, поэтому разлагаются в нижних слоях атмосферы, либо не содержат хлора или брома.

Использование хладона-12 в странах Европы запрещено с 1995 г., а в отдельных государствах с 1994 г.

Велущими сгранами-производителями ХФУ разработаны и согласованы Программой ООН по окружающей среде (ЮНЕП) дльтернативные заменители для всех областей применения озоноопасных веществ по свойствам, удовлетворяющим требованиям, пред'ьявляемым соответствующими отраслями промышленности.

15.2. СПОСОБЫ ОХЛАЖДЕНИЯ

Охлаждение льдом является самым простым способом охлаждешия продуктов питания, физическую основу которого составля-川 ироцесс плавления льда и снега. В зависимости от способа !ぃлучения лед бывает естественным или искусственным.

Охлаждение льдом используется в сооружениях, называемых людииками, в которых может быть различное размещение льда по ютюнению к охлаждаемым камерам с продуктами. Однако широко ирименение получили ледники с боковым размещением льда. \| лядиики лед закладывают в таком количестве, чтобы его хвати-

ло на определенный период; объем льда должен быть в $4-5$ раз больше объема камер с продуктами. При охлаждении льдом можно понизить температуру продуктов в леднике до $6 \ldots 8{ }^{\circ} \mathrm{C}$ при влажности $90 \ldots 95 \%$.

Аьдосоляное охлаждение. Источником холода является смесь льда и поваренной соли. Чем больше соли, тем ниже температура смеси. Понижение температуры происходит до определенноro предела. Самая низкая температура льда с поваренной солью составляет $-21,2^{\circ} \mathrm{C}$. Подсоленная смесь позволяет создавать в охлажденной среде более низкие температуры по сравнению с ледяным охлаждением.

Охлаждение «сухим льдом». Этот способ основан на сублимации твердого диоксида углерода (углекислоты). Сухой леg - твердая углекислота, которая по внешнему виду представляет собой куски вещества, похожего на мел, но очень холодные и быстро испаряющиеся при положительной температуре. В обычных условиях он из твердого состояния превращается непосредственно в парообразное. При этом гемнература понижается до $-78,9^{\circ} \mathrm{C}$. Холодопроизводительность сухого льда в 1,9 раза больше льда, полученного из воды. Сухой лед очень удобен для охлаждения продуктов, так как не выделяет влаги, не загрязняет продукты, имеет низкую температуру.

15.3. ХОЛОДИЛЬНЫЕ МАШИНЫ

Холодильной машиной называется совокупность устройств, необходимых для непрерывного отвода теплоты от охлажддемого 'тела и передаче ее охлаждающей среде, имеющей более низкую температуру, чем охлаждаемое тело.

Холодильные машины подразделяются на две группы: компрессионные - работающие с затратой механической энергии и абсорбционные - работающие с затратой тепловой энергии. Наибольшее применение во всех отраслях народного хозяйства имеют компрессионные холодильные машины.

Аля отвода теплоты от охлаждаемой среды применяют химическое вещество хладагент.

В качестве хладагента используют легкокипящие жидкости, имеющие низкую температуру кипения при атмосферном давлении. В настоящее время широко применяются хладаген'ты аммиак и хладон R22.

236

Аммиак - это бесцветный газ с резким запахом, оказыващщий раздражающее действие на слизистую оболочку. Поэтому ири утечке его можно обнаружить по запаху. Аммиак хорошо раr"воряется в воде. Жидкий аммиак и его растворы используют в холодильных машинах средней и большой производительности. Ірименение аммиака как холодильного агента в машинах малой мощности ограничено, так как он имеет недостатки [ядовит, взрывоопасен, быстро воспламеняется).

Хладон R22 - бесцветный газ со слабым специфическим запахом, поэтому его утечку из системы трудно обнаружить. Он станонится заметным только при содержании его в воздухе более 20%. Хладон 22 легко проникает через неплотности, нейтрален к металлам, взрывоопасен, но не горюч. При атмосферном давлении температура его кипения $400^{\circ} \mathrm{C}$. достоинство хладона R22 - безвредпость, только при содержании его в воздухе более 30% появляются признаки отравления организма из-за недостатка кислорода.

Теплоизоляционные материалы применяют для теплоизоляции холодильных шкафов, прилавков и витрин, для максимального уменьшения тешлопритока в охлаждаемое оборудование.

K теплоизоляционным материалам предъявляют следующие требования: прочность, долговечность, устойчивость, небольшая с"гоимость, низкий коэффициент теплопроводности и теплоемкости, безвредность, биостойкость, низкая гигроскопичность. При изготовлении холодильного оборудования в промышленности применяют следующие теплоизоляционные материалы: пено("гекло - пористую стеклянную массу, альфоль - гофрированные алюминиевые листы, минеральную пробку, пенопласт, асбест, рубероид и битум.

Компрессионные холодильные машины (рис. 15.1) состоят из 'лелующих основных частей: испарителя 1 , конденсатора 4 , компрессора 2, регулирующего вентиля 5 и электродвигателя 3 .

I'ис. 15.1. Кинематическая схема компрессионной хпподильной машины:
1 испаритель; 2 - компрессор; 3Мюккродвигатель; 4 - конденсатор; h. регупирующий вентиль

Испаритель - устройство, имеющее вид змеевиковой ребри-сто-трубной батареи, в которой происходит кипение младагента в условиях низкой температуры за счет теплоты, поглощаемой из окружающей среды. Испаритель устанавливается внутри холодильного шкафа в верхней его части.

Конgенсатор - это устройство, предназначенное для охлаждения паров хладагента и превращения их в жидкость. Аля ускорения охлаждения хладагента через конденсатор продувают воздух специальным вентилятором.

Компрессор - устройство, которое отсасывает пары хладагента из испарителя и направляет их в конденсатор в сжатом состоянии. Компрессор состоит из цилиндра, поршня и электродвигателя.

Регулирующий вентиль - устройство, регулирующее количество жидкого хладагента, подаваемого в испаритель. Кроме того, регулирующий вентиль снижает давление хлддагента для обеспечения условий низкотемпературного кипения.

Таким образом, все основные части холодильной машины связаны между собой замкнутой системой трубопроводов, в которой непрерывно циркулирует одно и то же количество хладагента и его паров.

Для улучшения режима работы в схему холодильной машины включают ряд дополнительных аппаратов: ресивер, приборы автоматики и др.

Фреоновая автоматическая компрессионная машина (ФАК) в настоящее время применяется для охлаждения витрин, шкафов, камер, прилавков, испарители которых устанавливают внутри охлаждаемого объекта. Аля удобства эксплуатации и ремонта некоторые устройства объединяют в один узел и называют агрегатом. В настоящее время заводы выпускают агрегаты ФАК-1,5М3 открытого типа. Испаритель и регулирующий вентиль помещаются в камере охлаждения, а остальные детали машины находятся на штампованной плите и образуют агрегат. Агрегат устанавливают рядом с камерой охлаждения и соединяют с испарителем трубками, по которым циркулирует хладагент.

Принцип работы компрессионной машины. Хладагент, попав в испаритель, закипает, превращаясь из жидкого состояния в газообразное. При этом он активно поглощает теплоту от трубок и ребер испарителя. Пары в испарителе отсасывают с помощью компрессора, который направляет их в сжатом состоянии ($6 . .8$ атм) в конденсатор. В конденсаторе с помощью охлаждаемого воздуха хладагент, имея высокое давление, переходит

в жидкое состояние. Жидкий хладагенг поступает в испаритель мюрез регулирующий вентиль, который снижает давление и регулирует его подачу.

Холодильные герметичные агрегаты, выпускаемые отечесявенной промышленностью, являются более совершенными холодильными машинами с герметичными комшрессорами марок ФГК. Главное их преимущество в том, что электродвигатель и комнрессор находятся в одном герметичном кожухе и образуют (дииый блок. Этот агрегат может работать длитсльное время, так как у него отсутствуют сальники, через которые может проходить утетка хладагента.

ФГК по своим размерам и массе значительно меньше ФАК. Аостигается это за счет уменьшения габаритных размеров двигагеля, отсутствия передаточного механизма и лучшего охлаждения ено парами хладагента.

ФГК работает почти бесшумно, не давая вибраций на фундамент.

Холоgильные агрегаты ВС отличаются от агрегатов ФГК голько более узким диапазоном рабочей температуры, меньшей массой и габаритными размерами конденсатора. Экранированный герметичный агрет'ат $Ф Г-1,1$ конструктивно вышолнен так, что в rерметичной полости находится только ротор электродвигателя. Вынесение статора из герметичной полости упрощает его сборку и дает возможность быстрой замены в процессе ремонта. Герметичные компрессоры являются перспективными основными агреІ'тами холодильных машин, применясмых на предприятиях общественного гитания, так как они имеют меньшую массу, габарить, и потребляют меньше энергии.

Отсугствие сальников в конструкции агрегата исключает утечку хладагента и значительно повышает надежность его работы.

15.4. ВИДЫ ТОРГОВОГО ХОЛОДИЛЬНОГО ОБОРУДОВАНИЯ

Аин хранения, демонстрации и продажи скоропортяцихся пролукююв предприятия общественного питания оснащают холодильІым оборудованием: сборными холодильными камерами, хололильными шкафами, охлаждаемыми витринами, прилавками.
($о н р е м е н н ы е ~ т и п ы ~ х о л о д и л ь н о г о ~ о б о р у д о в а н и я ~ р а з н о о б р а з н ы ~$ ぃい копсгрукции, 'температуре хранения и способу охлаждения.

По конструкции различают следующие типы холодильного оборудования:

- холодильные шкафы, предназначенные для хранения рабочего запаса продуктов;
- прилавки и витрины, используемые для демонстрации, продажи и хранения продуктов;
- сборные холодильные камеры, применяемые для хранения продуктов в течение нескольких дней;
- специализированное холодильное оборудование для охлаждения автоматов при продаже продуктов питания.

По температуре хранения различают три типа холодильного оборудования:

- обычное - для хранения охлажденных продуктов питания. Температура в холодильном оборудовании от -5 до $0^{\circ} \mathrm{C}$;
- для продажи напитков. Температура в холодильном оборудовании $10 \ldots 14^{\circ} \mathrm{C}$;
- низкотемпературіое оборудование для хранения замороженных продуктов и мороженого. Температура в холодильном оборудовании $-18 \ldots-14^{\circ} \mathrm{C}$.

По способу охлаждения различают оборудование с манинным охлаждением, сухоледным и льдосоляным.

Холоgильные шкафы ШХ-0,4М, ШХ-0,6, ШХ-1,2, Т2-125М (рис. 15.2) предназначены для хранения продуктов, полуфабрикатов и готовых блюд.

Холодильный шкаф состоит из охлаждаемой камеры и машинного отделения, которое расположено в нижней части. Корпус шкафа облицован снаружи покрашенной листовой сталью, а изнутри листовым алюминием. Между облицовками проложен слой теплоизоляции.

Холодильный шкаф имеет дверь с уплотнителем и запором. Внутри шкафа установлены полки для продуктов. Испаритель установлен в верхней части камеры, а холодильный герметичный агрегат - внизу, в машинном отделении. Датчик-реле температуры регулирует автоматическую работу холодильной машины в пределах $1 . . .3^{\circ} \mathrm{C}$.

На предприятиях общественного питания используют холодильные шкафы типа ШХ различных модификаций, которые отличаются друг от друга количеством дверей, вместимостью холодильных камер и некоторыми другими параметрами.

Рис. 15.2. Шкафы холодильные ШХ-0,4М (а), ШХ-0,6 (б), ШХ-1,2 (в),「2-125M (r)

В настоящее время иромышленность производит холодильные ॥кафы типов Т2-125M, Т-60М, ШХ-0,40М, ШХ-1,12 (табл. 15.1).

На небольших предприятиях общественного питания и в буфеTぃх используют бытовые (домашние) холодильники, которые межАу собой по принципу работы аналогичны и различаются только (I') объему рабочих камер и габаритным размерам.

Сборно-разборные холодильные камеры выпускаются двух 'инов: КXC - камера холодильная среднетемпературная и KXII - камера холодильная низкотемпературная (табл. 15.2). Виу'ренний объем камер составляет 6, 12 и 18 м 3. Камеры собиринтся и устанавливаются на предприятиях общественного питания из унифицированных щитов (панелей).
[3 камерах КXC испарители размещены под потолком или в мюхнюй части боковых стен. В камерах КХН вместо испарителя

Таблица 15.1. Технические характеристики холодильных шкафов

Параметр	Tип шкафа				
	T-60M	T2-125M	WX-0,4M	ШХ-0.6	шX-1,12
Полезный об'ьем, м ${ }^{3}$	0.6	1,25	0,4	0,6	1,2
Максимальная загрузка продуктами, кг	125	250	80	125	250
Стандартная хладопроизводительность хололильной мапинны. к $\Delta \boldsymbol{\mu} / ч$	2940	2940	1890	1890	2940
Габаритные размеры, мм: мина ширина высота	$\begin{gathered} 1210 \\ 855 \\ 1870 \end{gathered}$	$\begin{gathered} 1740 \\ 855 \\ 2160 \end{gathered}$	$\begin{gathered} 750 \\ 755 \\ 1625 \end{gathered}$	$\begin{aligned} & 1200 \\ & 800 \\ & 1900 \end{aligned}$	$\begin{gathered} 2000 \\ 800 \\ 1900 \end{gathered}$
Macca, кг	350	450	180	250	400

Таблица 15.2. Технические характеристики сборно-разборных холодильных камер КХН-2-6М и KXC-2-6

Параметр	Тип камеры	
	КХН-2-6М	КХС-2-6
Виутренний объем, м ${ }^{3}$	6	6
Максимальная загрузка продуктов, кг	800	600
Померживаемая температура, ${ }^{\circ} \mathrm{C}$	$-13 \ldots-11$	$-6 \ldots-2$
Мощность за сутки, кВт/ч, не более	23	9
Напряжение, В	$380 / 220$	$380 / 220$
Габаритные размеры, мм:		
длина	2250	2140
ширина	1930	2150
высота	2060	2170
Масса без холодильного агрегата, кг	690	800

242

Рис. 15.3. Камера хоподильная низкотемпературная KXH-2-6M:
" - общий вид; 5 - разрез камеры: 1 - панель с дверью; 2 - вентилятор ноэдухоохладитепя; З-пупьт управления; 4 - верхняя панель; 5 - воздухоохпидитепь; 6 - боковая панель: 7 - приборы автоматической регугировки и :иниты; 8 - холодильный агрегат; 9 - стеллажи; 10 - деревянные решетки; 11 панель пола

Рис. 15.4. Камера холодильная среднетемпературная КХС-2-6:
1 - стелпаж для продуктов; 2 - замок двери; 3 - дверь; 4 - пульт управления; 5 - воздухоохладитель; 6 - терморегулирующий вентиль: 7 - панель ограждения; 8-шкаф электрооборудования; 9 - холодипьный агрегат; 10 емкость для талой воды; 11 - спивная труба

установлены воздухоохладители. Продукты в камере размещаются на стеллажах, напольных решетках и крючках.

Освещаются камеры герметизированными светильниками.
Камера холоgильная низкотемпературная КXH-2-6M (рис. 15.3) выполнена в виде сборной конструкции панельного типа из 10 щитов. Необходимую температуру ($-13^{\circ} \mathrm{C}$) подерживает холодильный агрегат типа ФАК-1,5М3 и три испарителя. Аля оттаивания "шубы» с поверхностей испарителей установлена система автоматического оттаивания.

Камера холодильная среgнетемпературная КХС-2-6 (рис. 15.4) имеет одно отделенис и собирается из 12 унифицированных цанелей с теплоизоляцией из пенопласта.

Внутренняя облицовка выполнена из алюминиевых листов, ぃяружная - из металлопластика различных цветов. Дверь камеры снабжена герметизацией и запором со встроенным замком.

15.5. ХОЛОДИЛЬНЫЕ ПРИЛАВКИ И ВИТРИНЫ

На предприятиях общественного питания холодильные прилавки и витрины используют для демонстрации и хранения в процессе продажи охлажденных продуктов, холодных блюд, закусок и кондитерских изделий. Прилавки и витрины устанавливаются в торговых залах предприятий и магазинах кулинарии, а также в буфетах и кафе.

В настоящее время промышленность вынускает большое количество холодильных прилавков, витрин, однако чаще всего иснользуются комбинированные холодильные прилавки-витрины.

Обычно холодильные прилавки-витрины имеют верхнюю осшкленную часть - витрину и нижнюю - прилавок, причем у некоторых конструкций прилавок не охлаждается.

Прилавок-витрина "Пингвин-в" (рис. 15.5) состоит из двух частей, верхней - витрины и нижней - прилавка. Передняя и боковые стороны витрины закрыты двойным полированным стеклом 10 , а со стороны продавца - тремя раздвижными дверцами З, выполненными из оргстекла. Аном витрины служат шесть эма^ированных противней 12 , на которые укладываются продукты. 1 १отолок витрины выполнен из нержавеющей стали. Под ним закреплена люминесцентная лампа 9, освещающая витрину. Прилащк состоит из двух отсеков. левый служит для хранения продук'ти, а в правом находится холодильный агрегат. Закрывается прилливяк двумя дверцами с самозащелкивающимися запорами. Средняs температура в витрине от -4 до $-6{ }^{\circ} \mathrm{C}$, внутри прилавка от 2 no $-4^{\circ} \mathrm{C}$.

Прилавок-витрина Пв-Ш используется в школьных буфетах мя хранения холодных и горячих блюд. Он состоит из холодном, тплого и машинного отделений. Все это собрано и установлено ны общей металлической раме.

Внутри витрины и прилавка размещены испарители холодильぃый машины. В теплом отделении - тепловой шкаф и электромиммитница с ванной. Нагрев воды в ванне и воздуха в теплом пккфу производится тремя ТЭНами, управляемыми двумя пакетlиммы нереключателями.

Рис. 15.5. Прилавок-витрина «Пингвин-В»:
1 - холодильный агрегат: 2 - терморегулирующий вентиль: З - теплообменник: 4 - жидкостный трубопровод: 5 - испаритель витрины; 6 - теплоиаопяция; 7 - полка витрины; θ - раздвижные дверцы; 9 - люминесцентная лампа; 10 - витринные стекла: 11 - защитное стекло: 12 - противень: 13 полка для сумок покупателей: 14 - сливная труба

Верхняя часть витрины закрыта стеклом, а со стороны продавца установлены раздвижные дверцы из оргстекла. Внугри и снаружи прилавок облицован цветным пластиком и полированным профилем из алюминиевого сплава.

Прилавок-витрина «Taup-106» (рис. 15.6) состоит из витрины и прилавка. Охлаждаемая витрина расположена сверху. Спереди и с боков она имеет огражление из стекла, а сверху установлены раздвижные створки 7 и 16 . На дне витрины установлены противни 13 для укладки продуктов. Витрина освещается люминесцентной лампой 15 .

246

Рис. 15.6. Прилавок-витрина «Таир-106»:
" - вид сзади; б - вид по А-А: 1 -- электрощит; 2 - емкость для талой ноды; 3 - холодильный агрегат; 4 - машинное отделение: 5 - решетки для үняковочной тары; 6 - емкость для протирочного материала; 7 и 16 - створки: 8 - ручка гермореле; 9 - тумблеры; 10 - охлаждаемый прилавок; 11 поддон: 12 - полка для сумок; 13 - противень; 14 - испаритепь прилавка; 1文 - люминесцентная лампа; 17 - термометр; 18 - рабочий стол; 19 - испиритепь витрины: 20 - выдвижная платформа

Холодильный прилавок предназначен для хранения запаса охлажденных продуктов. В нем имеются выдвижная ииатформа 20 , на которую устанавливаются две корзины для продуктов, а также машинное отделение 4 , в котором расположен холодильный агрегат 3. Наружная обшивка прилавка выполнена из листовой стали, окрашенной белой эмалью, а внутренняя - из листового алюминия. Пространство между ними заполнено теплоизоляционным материалом. Холодильный прилавок-витрина со стороны выдвижной нлатформы имеет рабочий стол 18. Под рабочим столом в нише со стороны обслуживания расположена решетка для упаковочной тары 5 , емкость для протирочного материала 6 , ручка термореле 8 , тумблеры 9 для включения холодильного агрегата.

Прилавок-вштрина «Taup-102» является модификацией при-лавка-витрины «Таир-106» и отличается от него только тем, что витрина сверху открыта, обеспечивает свободный доступ к товару, находящемуся в охлаждаемом объеме.

Правила эксплуатации холодильного оборудования. Холодильное оборудование закрепляется за определенным работником, который следит за его правильной эксплуатацией и техническим состоянием. Не рекомендуется допускать перегрузки охлаждаемого объема продуктами, так как это ухудшает условия хранения.

В камеру охлаждения следует помещать продукты, температура которых не превышает температуры окружающей среды. Горячие продукты увеличивают влажность воздуха, что ириводит к образованию на испарителе инея или льда.

Категорически запрещается очищать испаритель инея ножом или скребком, так как это может нарушить герметичность системы.

Аля создания надлежащего температурного режима хранения необходимо как можно реже открывать загрузочные двери, чтобы не допускать притока теплого воздуха. Холодильная камера должна быть заземлена, а токонесуицие части холодильных машин закрыты защитным кожухом.

Необходимо периодически проводить санитарную обработку и текущий ремонт холодильного оборудования.

Техническое обслуживание холодильных агрегатов осуществляется механиком, в обязанности которого входят проверка системы охлаждения, регулировка приборов автоматики, проверка температурного режима, проведение мелкого текущего ремонта.

Прилавок-витрина «Таир-102» используется на предприятиях торговли и общественного питания для продуктов, холодных и горячих блюд.

15.6. ЛЬДОГЕНЕРАТОРЫ

На предприятиях общественного питания большое применение находит искусственный пищевой лед, который получают пу'гем замораживания воды в специальных аппаратах - льдогенераторах. Изготовляют пищевой лед в виде цилиндров или блоков, которые кладутся в отпускаемые блюдд и напитки для охлаждения.

Наиболее широкое применение получили следующие аппараты для получения льда: $Л Г-10 \mathrm{M}$, «Торос-2», а также ЛТЭ-35. Принцип работы этих аппаратов в основном аналогичен, а различия только по производительности и габаритным размерам (табл. 15.3).

льgогенератор $\boldsymbol{\Lambda r}$-10M (рис. 15.7) представляет собой металлический шкаф с тремя отделениями. В верхнем отделении шкафа находится сам льдогенератор, в левом нижнем - бункер для хранения и в правом нижнем - машинное отделение.

Льдогенератор состоит из металлической наклонной плиты, на которой периодически намораживается слой льда. Внутри плиты расположен трубчатый змеевиковый испаритель 6 . Толщина слоя льда регулируется датчиком 8 термостата испарителя. По пери-

Параметр	Тип лцдогенератора	
	АГ-10M	"Topoc-2"
Производительностъ, кг/ч	3	1.5
Рсямеры брусочков льда, мм	38×32	32×32
Вместимость бункера, кг	70	25
Моциость, кВт	1,1	0,3
l'ибаритные размеры, мм:		
мина	760	555
тирина	1250	1685
milcota	1280	1200
Matcod, KI	295	115

Рис. 15.7. Льдогенератор ЛГ-10М:
1 - бункер; 2 - термостат; 3 - корпус; 4 - режущая решетка; 5 - ртутный переключатель; 6 - испаритель; 7 - водяной коллектор; 8 - датчик термостата испарителя; 9 - терморегупирующий вентипь; 10 - ванна; 11 - агрегат ФАК-1,1Е; 12 - мәгнитный пускатель

метру плиты расположена трубка мля системы оттаивания, по которой проходит теплый жидкий фреон.

Водоподаюгцее устройство состоит из водяного коллектора 7 , ванны 10 с поплавковым клапаном, центробежного насоса и сифонной трубки. Режущая пласт льда решетка 4 состоит из двух рядов нихромовых струн, к которым подведен ток напряжением 12 B.

Принцип работы льдогенератора $\Lambda Г-10 М$, Ванна, в которой находится насос, через поплавковое устройство заполняется водой, которая поступает через водяной комлектор на испарительную батарею. Выходя из отверстий коллектора, она за-

мерзает ровным слоем на испарителе. По достижении заданной толщины (8 ... 16 мм) датчик отключает водяной насос, исключает подачу горячих паров хладагента в испаритель для подтаивания намерзшего слоя льдд. Подтаявший лед сползает на решетку, которой режется на брусочки, и они собираются в бункере. При заполнении бункера льдом до определенного уровня термостат отключает машину.

При появлении неисправности лицо, ответственное за эксплуатацию холодильного оборудования, отключает льдогенератор и вызывает механика, обслуживающего данный участок согласно договору.

Правила эксплуатации льдогенератора ЛГ-10М. Перед началом работы льдогенератор осматривают, проверяя его техническое и санитарное состояние. Затем открывают водозапорный вентиль и регулируют подачу воды, после чего включают льдогенератор в работу. Толщину намораживаемых брусочков льда регулируют с помощью термодатчика и термостата.

После окончания работы льдогенератор отключают от сети, закрывают водозапорный вентиль и производят санитарную обработку.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Перечиспите способы охпаждения, применяемые на предприятиях общественного питания.
2. Опишите основные части компрессионной машины.
3. Дайте характеристику холодильного агрегата.
4. Какие хоподильные агрегаты устанавпивают на холодипьном оборудовании?
5. Перечислите основные правила эксплуатации холодильного оборудования.
6. В чем заключается принцип работы льдогенератора?

Глава 16

ОХРАНА ТРУДА И ТЕХНИКА БЕЗОПАСНОСТИ

16.1. ЗАКОНОДАТЕЛЬСТВО 170 ОХРАНЕ ТРУДА И ТЕХНИКЕ БЕЗОПАСНОСТИ

Охрана здоровья трудящихся, обеспечение безопасных условий труда, ликвидация профессиональных заболеваний и производственного травматизма составляют одну из главных забот нашего государства.

В соответствии с Конституцией Российской Федерации гражданам обеснечивается равноправие в области труда независимо от национальности и пола. Женщинс предоставлены равные права с мужчиной на труд, оплату, отдых и социальное обеспечение.

Защита трудовых прав граждан осуществляется государственными организациями и профсоюзами. В основном законе страны уделено большое внимание созданию благоприятных условий труда для жизни и здоровья человека. Они включают в себя комплекс правовых, технических, санитарно-гигиенических и организационных мероприятий.

Мероприятия по охране труда разрабатываются на основе Конституции страны, и их выполнение возлагается на администрацию предприятий и организаций. Организация обязана внедрять современные средства защиты, предупреждающие производственный травматизм и обеспечивающие санитарно-гигиенические условия, предотвращающие возникновение профессиональных заболеваний.

Охрана труда в России - это широкий комплекс правовых, санитарно-гигиенических, технических и оргәнизационных мероприятий, направленных на создание здоровых, безопасных и высокопроизводительных условий труда на предприятиях общественного питания.

Техника безопасности является одной из основных задач охраны труда, которая состоит из технических и организационных мероприятий, направленных на создание и внедрение безопасной техники, безопасных производственных процессов, средств автоматической связи и сигнализации, оградительных и предохранигельных приспособлений, а также средств индивидуальной защиты, предотвращающих возможность производственного травматизма.

На каждом предприятии взаимоотношение рабочих и служащих с администрацией оговаривается в виде комективного договора, который заключается трудовым коллективом с администрацией предприятия. Заключению комлективного договора предшествует обсуждение и одобрение его проекта на собрании рабочих и служащих. Этот договор расиространяется на всех рабочих и служащих предприятия.

Коллективный договор содержит основные положения по вопросам труда и заработной платы, установленные для данного предприятия, в соответствии с действующим законодательством, а также положения в области рабочего времени, времени отдыха, оплаты труда и материального стимулирования, охраны труда, разработанные администрацией предприятия и труловым коллективом в пределах предоставленных им прав. Законодательство, охраняя установленную продолжительность рабочего дня (40 ч в неделю), как правило, не допускает проведение сверхурочных работ. Проведение таких работ допускается в исключительных случаях, но даже при наличии законных оснований для проведения сверхурочных работ администрация предприятия не вправе осуществлять их без разрешения трудового коллектива.

Трудовое законодательство проявляет исключительную заботу 0) подрастающем поколении и предусматривает наиболее благоприятные условия для труда, отдыха и обучения подростков.

На работу принимаются лица, достигшие 16 лет. Им установлен 6-часовой рабочий день при сохранении оплаты за полный рабочий день, как для взрослых работников соответствующей категории. Запрещается использовать труд подростков в ночное и сверхурочное время. Подростки не допускаются к работам во предных и тяжелых производственных условиях.

Рабочим и служащим установлен ежегодный оплачиваемый ютуск продолжительностью не менее 24 рабочих дней. Работающим женщинам предоставляются льготы согласно действующему законодательству.

Администрация предприятия общественного питания обязана טюсснечивать выдачу, хранение, стирку и ремонт спецодежды,

спецобуви и других средств индивидуальной защиты. Контроль за соблюдением выполнения законов об охране труда, технике безопасности и производственной санитарии осуществляется органами государственной инспекции по труду и профсоюзами. Контроль за соблюдением предприятиями санитарно-гигиенических условий труда проводит Роспотребнадзор, а за соблюдением предприятиями пожарной безопасности - Государственная противопожарная служба МЧС России.

Трудовой коллектив осуществляет также контроль за работой предириятия общественного питания и выполнение администрацией законодательства о труде, правил и норм по технике безопасности и производственной санитарии. При невыполнении обязательств по договору, несоблюдении норм и иравил по охране труда и технике безопасности трудовой коллектив имеет право ставить вопрос о наказании или отстранении от должности руководящих работников предприятия.

Указом Президента Российской Федерации от 20 июля 1994 г. № 1504 утверждено Положение о Федеральной инспекции труда при Министерстве труда Российской Федерации и ее обязанностях. В настоящее время Роструд (Федеральная служба по труду и занятости) в составе Минзравсоцразвития России.

Роструд и се государственные инслекции труда республик, краев, областей, автономных округов, районов и городов образуют единую систему надзора и контроля за соблюдением законодательства Российской Федерации о труде и охране труда на предприятиях, в учреждениях и организациях всех форм собственности.

16.2. ОРГАНИЗАЦИЯ РАБОТЫ ПО ОХРАНЕ ТРУДА

Работа по охране труда на предприятиях должна быть организована в соответствии с Положением об организации работы по охране труда, разработанным с учетом действующего отраслевого Положения об организации работы но охране труда и утвсржденным руководителем предприятия.

В Положении должно быть указано, что общее руководство и ответственность за организацию и проведение работы по охране труда в целом по предприятию возлагаются на его руководителя (владельџа), а в структурных подразделениях предприятия - на их руководителей.

На предприятии Положением должен быть установлен порядок:

254

- организации проведения и периодичности обучения работников технике безопасности труда;
- проведения и периодичности инструктажей по безопасности труда:
- проведения работы по пожарной безопасности;
- проведения работ повышенной опасности с выддчей на-ряда-допуска;
- проведения погрузочно-разгрузочных работ;
- технического обслуживания оборудования:
- закрепления оборудования за людьми, ответственными за его правильную и безопасную эксплуатацию при пользовании;
- обеспечения и выдачи работникам спецодежды и средств индивидуальной защиты;
- контроля за соблюдением правил и норм по охране труда по предприятию в целом и его структурным подразделениям.

Практическая работа по охране труда проводится специальной службой, инжснером по охране труда или лицом, на которое приказом по предприятию возложена эта работа, подчиненным непосредственно руководителю предприятия.

Обучение работников безопасности труда должно проводиться на всех предприятиях общественного питания нсзависимо от характера и степени опасности производства, а также независино от форм собственности.

Инструктаж и обучение безонасным приемам и методам рабо' \quad п проводится для всех работающих и инженерно-технических ряботников на всех участках независимо от стажа, квалификации и ошыта работающего, а также для лиц, прибывших на предприя'ие для прохождения производственной практики.

На предприятиях общественного питания инструктаж по бсзиссности труда по характеру и времени проведения подразделя"э' на вводный, первичный на рабочем месте, повторный, внеплатыный и целевой.

Вводный инструктаж по безопасности труда проводят со щсеми вновь принимаемыми на работу независимо от их образониия, стажа работы по данной профессии или должности, с временыыи работниками, командированными, учащимися и студен'ぃми, ирибывшими на производственную практику.

Вводный инструктаж проводится по программе, утвержденной руководителем предприятия. Этот инструктаж должен проводить руководитель предприятия или работник, на которого приказом руководителя предприятия возложена практическая работа по oxране труда и технике безопасности.

При проведении вводного инструктажа по технике безонасности администрация предприятия обязана ознакомить работника:

- с осюовными положениями законодательства о труде;
- правилами внутреннего трудового распорядка;
- основными требованиями электробезопасности;
- порядком составления акта о несчастном случае, связанном с производством;
- порядком оказания первой помощи постраддвшим от электрического тока и при других несчастных случаях;
- общими требованиями к организации и содержанию рабочих мест;
- требоованиями личной гигиены и производственной санитарии, назначением и использованием санспецодежды, санспецобуви и предохранительных приспособлений.
О проведении вводного инструкгажа делают запись в журнале регистрации вводного инструктажа с обязательной подписью инструктируемого и инструктирующего, а также в документе о приеме на работу. Наряду с журналом может быть использована личная карточка прохождения обучения.

Первичный инструктаж на рабочем месте должны проходить все вновь поступающие работники и учащиеся, направляемые на предприятия для прохождения производственной практики, а также работники, переводимыє с одной работы на другую или с обслуживания одного вида оборудования на другой.

Без первичного инструктажа на рабочем месте ни один работник не должен допускаться к работе.

Инструктаж на рабочем месте должны проводить руководители тех структурных подразделений, в непосредственном подчинении которых будут находиться инструктируемые работники.

На небольших предприятиях, не имеющих структурных подразделений, проведение инструктажа возлагается на руководителя предприятия.

При проведении инструктажа по технике безопасности на рабочем месте работник должен быть подробно ознакомлен:

- с устройством оборулования, на котором предстоит работать работнику и которое он будет обслуживать;
256
- со всеми опасными местами у машины, с предохранительными ограждениями, приспособлениями и средствами индивидуальной защиты, с их назначением и правилами пользования;
- с правильной и безопасной организацией обслуживания рабочего места;
- порядком подготовки к работе (проверка исправности оборудования, заземления, инструмента, инвентаря ит.д.);
- безопасными и правильными приемами работы и последствиями применения неправильных приемов работы;
- инструкцией по технике безопасности обслуживаемого оборудования;
- порядком безопасного передвижения по территории предприятия.
Инструктаж должен сопровождаться показом на месте правильных приемов работы с повторением работниками этих приемов. Инструктирующий должен убедиться в четком знании и понимании каждым работником правил техники безопасности.

Повторный инструктаж на рабочем месте должны прохоАить все работники независимо от квалификации, образования и стажа работы. Он проводится в целях лучшего усвоения, углубления и закрепления знаний по безопасным приемам и методам труда.

Если в результате проверки будут выявлены неудовлетворительные знания работником инструкций по технике безопасности, инструктирующий обязан дать работнику все необходимые юбтяснения и непосредственно на рабочем месте показать, как пужно правильно выполнять работу безопасными методами, и потребовать строгого выполнения всех требований инструкций по технике безопасности. Инструктаж должен подкрепляться подробным разбором примеров из практики предприятия.

Внеплановый инструктаж проводится:

- при введении в действие новых или переработанных стандартов, правил, инструкций по охране труда и изменений к ним;
- изменении технологического процесса, замене или модернизации оборудования, приспособлений и инструмента, исходного сырья, материалов и других факторов, влияющих на безопасность труда:
- нарушении работником требований безопасности труда, которые могут привести или привели к травме, аварии, гожару или отравлснию;
- по требованию органов надзора;
- при перерывах в работе для работ, к которым предъявляют дополнительные (повышенные) требования безопасности труда, более чем на 30 календарных дней, а для остальных работ - 60 дней.

Целевой инструктаж проводят при выполнении разовых работ, не связанных с прямыми обязанностями по специальности: ликвидации последствий аварий, стихийных бсдствий и катастроф, производствс работ, па которые оформляется наряд-допуск, разрешение и друтие документы. Проведение всех видов инструктажа оформляется в специальном журнале регистрации установленной формы. Страницы журнала должны быть пронумерованы, прошнурованы и скреплены печатью.

В соответствии с требованиями органов здравоохранения каждый работник предприятий общественного питания проходит периодические медицинские осмотры.

Периодичность медицинских осмотров, которые работник должен проходить во время работы, устанавливаются в соответствии с требонанием органов здравоохранения. Работник предприятия общественного питания обязан иметь личную медиџинскую книжку, в которую вносятся результаты медицинских обследований.

На предприятиях общественного питания для поднятия и перемещения тяжестей вручную установлены нормы:

- Аля женщин:

при чередовании с другой работой (до 2 раз в 1 ч) масса перемещаемого или поднимаемого груза нс более 10 кг и постоянно в течение рабочей смены - масса не более 7 кг;
общая масса перемещаемого груза или поднимаемого за смену при подъеме с рабочей поверхности не должна превышать 5 т; с пола или уровня ниже рабочей поверхности - 2 т;

- Аля мужчин:

постоянно в течение рабочей смены масса груза не более 30 кг (профессиональьому грузчику - не более 50 кг);

общая масса груза, перемещаемого или поднимаемого за смену (на всех работах, кроме погрузочно-разгрузочных), при подъеме с рабочей поверхности не должна превышать 12 т, с пола или уровня ниже рабочей поверхности - 5 т;

- для подростков от 16 до 18 лет:

если эта работа занимает не более $1 / 3$ рабочего времени - массой не более 16 кг;
при постоянном переносе тяжести - массой не более 4 kr .
Расстояние между работниками, переносящими грузы, должно быть не менее 3 м.

16.3. ПРОИЗВОДСТВЕННЫЙ ТРАВМАТИЗМ

Несчастным случаем или травмой называется происшествие, при котором в результате внезапного воздействия (механическою, химического, теплового) внешней среды произошло иовреждение органов человека или нарушение их нормальной жизнедеятельности.

Производственной травмой считается травма, нолученная работником или служащим при выполнении своих трудовых обязанностей, при соверишении действия в интересах производства или в иути на работу и с работы на транспорте, предоставленном ир'анизацией.

На предприятии общественного питания случаи травматизма связаны в основном с процессом приготовления пищи. Травмы происходят в результате нарушения правил техники безопасности и трудовой дисциплины.

Все случаи производственного травматизма на производстве подлежат рассмотрению и учету. Острые отравления, тепловые уларњ, обморожения не относятся к производствениому травма‘'изму, но учитываются как несчастные случаи. Все несчастные случаи на производстве независимо от того, когда они произопли, подлежат тцательному расследованию и принятию надлежамих мер к их неповторению.

Несчастные случаи с учащимися учитываются и расследуются слсдующим образом. Если учащийся начального профсссионального учреждения проходит практическое обучение в классе, лабоюшории или на производстве под руководством мастера произ-

водственного обучения, то несчастный случай расследуется и учитывается в учебном учреждении. Если практика проводится на рабочем месте предприятия общественного питания согласно приказу и под руководством опытного персонала предприятия, то несчастный случай расследуется и учитывается администрацией данного предтриятия.

О несчастном случае на производстве пострадавший или очевидец обязан сообщить директору предприятия или ответственному за производство. Пострадавшему оказывается первая медицинская помощь, а в случае необходимости вызывают врача. Расследованию подлежат все несчастные случаи на производстве, которые приводят к потере нетрудоспособности сроком на 1 день или более. Руководитель предприятия совместно с общественным инспектором по охране труда и работником, ответственным за охрану труда на производстве, в срок, не превышающий 3 сут, должны расследовать и составить акт о несчастном случае по форме $\mathrm{H}-1$ в 4 экз.

Расследованию подлежат и несчастные случаи без утраты трудоспособности, так как причины, вызывающие их, могут привести к более тяжелым травмам на производстве.

Администрация предприятия общественного питания обязана анализировать все несчастные случаи и разрабатывать конкретные мероприятия по их устранению и контролю за их выполнением.

164. ПЕРВАЯ ПОМОЩЬ ПРИ НЕСЧАСТНЫХ СЛУЧАЯХ НА ПРОИЗВОДСТВЕ

Главные условия успеха при оказании первой помощи - быстрота действия, находчивость и умение человека, оказывающего помощь.

В каждой смене предприятия должны быть выделены и обучены специальные лица для оказания пострадавшим при несчастных случаях первой (доврачебной) помощи: временная остановка кровотечения, перевязка раны, иммобилизация перелома (неподвижная повязка, наложение транспортных шин), оживляющие мероприятия (искусственное дыхание, массаж сердца), освобождение потерпевшего от источника поражения и перенос его в безопасное место.

Первая помощь при ранениях, переломах и ушибах. При порезах, ранениях в рану могут быть занесены микроорганизмы, на-

хぃдящиеся на ранящем предмете, на коже пострадавшего, а также на руках оказывающего помощь, на грязном перевязочном материале и др.

Особое значение следует уделять ранам, загрязненным землей, ию избежание заражения пострадавшего столбняком. Срочное обрдщение к врачу и введение противостолбнячной сыворотки прелупреждает это заболевание.

При оказании первой помощи при ранении, порезах нужно осторожно очистить кожу вокруг раны от краев наружу так, чтобы не загрязнить рану. Перед наложением повязки очищенный участок вокруг раны следует смазать настойкой йода.

При наложении повязки нельзя касаться руками той части перевязочного материдла, которая должна быть наложена непосредственно на рану. Прикасаться к самой ране даже вымытыми руками недопустимо.

При переломах и вывихах конечностей необходимо поврежденную конечность зафиксировать в неподвижном состоянии пиной, доской или другими подобными предметами. Шины накладываются поверх одежды и обуви. Поврежденную руку можно также подвесить к шее или прибинтовать к туловищу бинтом или косынкой.

При преgполагаемом переломе черепа (бессознательное состояние после ушиба головы) необходимо приложить к голове холодный предмет (грелку со льдом, снегом или холодной водой) или сделать холодную примочку.

При переломе ребер, признаком когорого является боль при дыхании, кашле и движении, необходимо туго забинтовать грудь или стянуть ее полотенцем во время выдоха.

При nogозрении на перелом позвоночника необходимо осторожно положить пострадавшего на твердую ровную поверхность, не поднимая его, или повернуть его на живот лицом вниз, следя ири этом, чтобы туловище не перегибалось во избежание повреждения спинного мозга.

При наличии уверенности в том, что пострадавший получил юолько ушиб, а не перелом или вывих, к месту ушиба следует приложить холодный предме’г.

Первая помощь при кровотечениях. Кровотечения могут быть дртериальными (кровь яркого алого цвета), венозными (кровь 'гемно-красного цвета), капиллярными (редкие капли) и паренхиматозные (внутреннее кровотечение).

Аля остановки кровотечения необходимо:

- поднять поврежденную конечность вверх;
- закрыть кровоточащую рану перевязочным материалом и придавить сверху, не касаясь пальцами самой раны. В таком положении дсржать $4 \ldots 5$ мин. Если кровотечение остановится, то, не снимая наложенного материала, забинтовать раненое место с небольшим нажимом;
- при сильном кровотечении из раны на конечности следует сдавить кровеносные сосуды, питающие раненую область, кровоостанавливающим жгутом или закруткой из подручных материалов. K жгуту необ́ходимо приложить записку с указанием времени его наложения и вызвать врача. Жгут накладывают не более чем на 1,5 ч. Артериальныс кровотечения сдавливают выше раны, венозные - ниже. Внутреннее кровотечение останавливают герметичной повязкой.

Первая помощь при термических и электрических ожогах. Если на пострадавшем загорелась олежда, надо сбить пламя водой, снегом или набросить на него любую плотную ткань.

Нельзя бежать в горящей одежде, так как ветер раздувает пламя и увеличивает ожог.

При небольпих участках ожогов I и IT степени (образование пузырей) нужно, не вскрывая пузырей, наложить на обожженный участок кожи с'терильную повязку. Одежду и обувь на обожженном месте необходимо разрезать ножницами, а куски одежды, прилипшие к телу, забинтовать одновременно с пораженным участком тела.

При тяжелых ожогах пострадавшего необходимо, не раздевая, завернуть в чистую простыню или ткань, укрыть потеплее, напоить теплым чаем и создать покой до прибытия врача.

Первая помощь при электротравмах. для того чтобы достичь успешного рсзультата при оказании первой помощи пострадавшему от поражения электрическим током, надо не только уметь оказать эту помощц, но и выполнить все операции четко и быстро, не теряя ни секунды.

При прикосновении человека к токоведущим частям, находящимся под напряжением, происходит, как правило, судорожное сокращение мышц, вследствие чего человек не может самостоятельно освободиться от источника тока, отрицательное действие которого на организм пострадавшего возрастает. Поэтому в первую очередь освобождают пострадавшего от воздействия тока: необходимо отключить питание электроприбора или отбросить токоведущие проводд, соблюдая меры личной безопасности.
(`ледует воспользоваться палкой, доской или оттянуть его за одежду, если она сухая. При этом рекомендуется использовать изолирующие предметы: диэлектрические перчатки или галоши, встать на резиновый коврик или сухую доску, не проводящие мектрический ток.

При отделении пострадавшего от токоведущего элемента слелует действовать только одной рукой. После освобождения нострадавшего от действия электрическоюо тока необходимо оценить его состояние. Признаки, по которым можно оиределить состояние пострадавнего, следующие: сознание, цвет кожного покрова, дыхание, наличие и частота пульса, реакция зрачка на свет.

Если после освобождения от действия тока пострадавший дышит самостоятельно, у него есть сердцебиение и прощупывается пульс, то необходимо:

- уложить его, расстегнуть одежду, стесняющую дыхание;
- согреть тело или, если жарко, обеспечить ирохлдду и приток свежего воздуха;
- непрсрывно наблюдать за пульсом и дыханием.

При отсутствии у пострадавшего сердцебиения или дыхания немедленно начать делать искусственное дыхание и непрямой массаж сердца.

Во всех случаях необходимо вызвать врача.
При поражении электрическим током смерть часто бывает клинической (мнимой), поэтому никогда не следует отказываться ют оказания помощи пострадавшему.

Нужно помнить, что спасение пострадавшего от действия элсктрического тока в большинстве случаев зависит от скорости освобождения его от воздействия тока, а также от быстроты и правильности оказания ему первой помощи.

Первая помощь при тепловом ударе. При тепловом ударе пострадавшего нужно уложить так, чтобы голова была выше туловища, расстегнуть стесняющую дыхание одежду и обеспечить ириток свежего воздуха. Смочить грудь холодной водой, на голону сделать холодные примочки и дать понюхать нашатырный спирт.

Если пострадавший находится в сознании, можно дать ему выиить 15 ... 20 капель настойки валерианы, разведенных в $1 / 3$ стакаl"d воды, холодный чай или подсоленную воду.

Если дыхание прекратилось или очень слабое и пульс не прощушывается, необходимо сразу же начать делать искусственное дыхлние, массаж сердца и срочно вызвать врача.

16.5. ОСНОВНЫЕ МЕРОПРИЯТИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ И ЭЛЕКТРОБЕЗОПАСНОСТИ НА ПРОИЗВОДСТВЕ

В настоящее время трудно представить себе работу какоголибо предприятия без применения электрической энергии, тем более предприятия общественного питания, где для приготовления и отпуска пищи используются различные виды технологического электрооборудования.

Широкое использование электрооборудования приводит к необходимости обучения обслуживающих работников безопасной эксплуатации этого оборудования. Нарушение этих правил приводит к порче оборудования, ножарам и гибели людей.

Когда человек находится в сфере действия интенсивного электромагнитного поля или непосредственно соприкасается с находящимися под напряжением проводниками электрического тока, по его телу проходит электрический ток. В результате действия электрического тока на организм может возникнуть электротравма, т.е. более или менее значительные нарушения функций.

Характер и интенсивность нарушений в организме, вызванных электрическим током, в основном определяются видом и величиной тока, млительностью его действия и рядом других факторов.

Поражение организма человека в большей степени зависит от силы тока, проходящего через жизненно важные органы человека: мозг, центральную нервную систему, сердце, органы дыхания, и от индивидуальных особенностей пострадавшего.

Все поражения электрическим током подразделяются на два вида - электрические травмы и электрические удары.

Наиболее опасными являются электрические удары, так как вызывают нарушение физиологических процессов в организме человека.

Во избежание поражения работающего персонала электрическим током на предприятиях общественного питания применяют индивидуальные и общие средства защиты.

K индивидуальным средствам защиты относятся диэлектрические перчатки, коврики, галоши и изолирующие подставки. При работе с электрическим оборудованием необходимо иметь сухие руки, одежду и обувь.

К общим средствам защиты от поражения током относятся защитное заземление, зануление и автоматическое отключение оборудования.

Защитным заземлением называется преднамеренное электрическое соединение какой-либо части электрической установки - зыземляющим устройством.

Основной задачей защитного заземления является снижение плпряжения относительно земли на конструктивных частях оборулования, которое может оказаться под напряжением в случае июобоя изоляции.

Заземляющим устройством называется совокупность заземли'сля и заземляющих проводников. Заземлитель - это метллический предмет диаметром $25 \ldots 50$ мм, находящийся в земле на глубине $1,2 \ldots 2,5$ м. Заземляющий проводник - металлический проводник, соединяющий заземляемые части электрооборулования с заземлителем. Электрооборудование соединяют с за๒мляющим устройством с помощью болтов или сварки. Заземляющие проводники должны быть защищены от механических ॥овреждений, коррозии и быть легкодоступными для осмотра и контроля.

Защитное заземление снижает напряженность прикосновения, элк как сопротивление заземлителя меньше 4 Ом, а сопротивление тיла человека составляет примерно 1 кОм, оно также способствумч срабатыванию защиты автоматическими выключателями и переюранию плавких вставок быстродействующих предохранителей.

Зануление служит для защиты от поражения электрическим 'оком и для обеспечения нормальной работы устройств.

Зануление переносных электрических машин трехфазного эока должно осуществляться специальной четвертой жилой, рас॥оложенной в одной оболочке с фазными жилами переносного провода, и присоединяется к корпусу машины и к специальному коぃтакту вилки. Сечение этой жилы должно быть равным сечению фазных проводов.

При повреждении изоляции корпус переносного электрооборулования оказывается под напряжением. В результате пробоя нзоляции происходит короткое замыкание между фазным и нуленнм проводами.

Заземлению или занулению подлежат:

- корпуса всех электрических аппаратов, машин и оборудования, установленных на предприятии общественного питания;
- приводы электрических аппаратов;
- каркасы распределительных щитов и щитов управления, шкафов, если на них установлено электрооборудование иапряжением выше 24 В переменного тока;
- металлические корпуса передвижных и переносных электроприемников;
- электрооборудование, установленное на движущихся частях машин и механизмов.

Зацитным отключением называется система защиты, обеспечивающая автоматическое отключение всех фаз или полюсов аварийного учас'та сети с полной продолжительностью отключения не более 0,2 с. Эгот способ наиболее совершенный, который успешно действует при любых напряжениях в сети.

Исправность защитного заземления, зануления или системы защиты имеет большое значение по предупреждению электротравматизма на предприятиях общественного питания. Однако при влажной уборке помещения или электрооборудования нужно помнить, что вода и влажная тряпка являются хорошими проводниками электрического тока. Категорически запрещается класть влажную спецодежду, металлические предметы на электрооборудование и подводяцие устройства.

Оборудование, работающее на газовом топливе, представляет повышенную опасность, так как газы ядовиты и при вдыхании могут вызвать отравление.

Кроме того, газ в определенном соотношении с воздухом образует взрывчатую смесь, которая взрывается от малейшей искры.

Вот почему в основные мероприятия по технике безопасности внося'гся вопросы по технике безопасности работы с газовым оборудованием.

Пожарная безопасность предприятий должна обеспечиваться системами предотвращения пожара и противопожарной защиты, в том числе организационно-техническими мероприятиями на основе действуюмего законодательства по охране труда.

16.6. ОБЩИЕ ПРАВИЛА ЭКСПЛУАТАЦИИ ЭЛЕКТРООБОРУДОВАНИЯ И ОСНОВНЫЕ ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОІПАСНОСТИ

Электрический ток, проходя через тело человека, может поразить жизненно важные органы (сердце, мышцы, нервную систему, кожу и т.д.).

Степень поражения электрическим током зависит в основиом от следующих основных причин: величины напряжения, местных

условий，состояния организма и пути прохождения тока по телу чюловека．

Сила тока 0，01 А поражает отдельные органы человекд，а сила тока более $0,03 \mathrm{~A}$ приводит к травме или потере сознания．Сила юкка более $0,1 \mathrm{~A}$ является опасной для человека и приводит к ле－ тальному исходу．

для безопасной эксплуатации электроустановок применяют зд－ митное заземление，ус’танавливают надежную изоляцию，ограж－ лают токонесущие части，используют индивидуальные защитные с редства．

Токоведущие провода должны иметь хорошую изоляцию（со－ противление изоляции $R_{\text {изол }} \geq 0,5 \mathrm{MOм}$ ），а токонесущие части－ специальное ограждение，исключающее случайные прикоснове－ ぃия к ним．В помещениях с повышенной опасностью электропро－ ныда заключаются в трубы．

При нормальных условиях корпус электроустановки не нахо－ лится под напряжением，так как электропровода имеют изоля－ цию．При нарушении изоляции прикосновение к корпусу маши－ แ，или оборудованию становится смертсльно опасным．Поэтому， щобы предупредить эту опасность，устанавливают защитное за－ зммление．Аля этоюо в землю на определенную глубину помеща－ ぃ＇металлический заземлитель（папример，контур из металличе－ （＇ких стержней）． K заземлителю приваривают проводник большо－ ＇ぃ сечения（металлическую полоску），который медными провода－ ми соединяют с корпусом электроустановки．

Если при наличии такой защиты коріус оборудования окажет－ ＇sl под напряжением，то произойдет срабатывание предохрани－ ＇ツльного устройства и электрическая цепь отключится．

K инливидуальным средствам защиты от поражения электри－ џсским током относятся диэлектрические терчатки и галоши из （＇ие！иыльной ре：зины，а также резиновые коврики и изолирующие подставки．Все эти средства изолируют человека от токонесугцих эмементов и земли．

Работники общественного питания обычно работают в поме－ щщниях с повышенной влажностью，с влажными токопроводяции－ мы полами и большим числом электрических машин．Поэтому тех－ пика безопасности по защите работников от возможных пораже－ пий электрическим током является главной задачей администра－ џии．

ААминистрация обязана регулярно проводить занятия по воп－ рк＇лм соблюдения электробезопасности，вести журнал техничес－ кию контроля за электрооборудованием，а также контролировать

устройство защитного заземления (зануления) токоведущих частей электрических установок.

Каждая машина или аппарат должны быть закреплены за определенным работником столовой, который отвечает за правильную их эксплуатацию и техническое состояние.

Перед началом работы необходимо проверить наличие защитного заземления (зануления) и резиновых ковриков, убедиться в исправности оборудования, его крепления и надежности защитных ограждений. Проверить правильность сборки, санитарное состояние и работу машин на холостом ходу.

При работе на машинах периодического действия не допускается загрузка машины болыше установленной нормы, так как это приводит к выходу машины из строя и порче обрабатываемой продукции. Неполная загрузка машины снижает ее производительность, ресурс работы оборудования и потребляемой им электроэнергии.

При работе машин категорически запрещается подталкивать продукцию руками. Для выполнения этих работ нужно обязательно отключить машину.

После окончания работы машину отключают, разбирают, промывают и высушивают. Наружные части машины протирают сначала влажной, а потом сухой тканью. Детали, которые подвергаются трению, и поврежденные коррозией места смазывают несоленым пищевым жиром.

Контроль измерительных приборов, периодическое техническое обслуживание и планово-предупредительный ремонт машин, оборудования и приборов проводятся работниками ремонт-но-монтажного участка на договорных началах. Каждая отремонтированная или вновь установленная машина перед сдачей в эксплуатацию должна пройти соответственное испытание с составлением акта. На каждую машину должен быть заведен технический паспорт с указанием основных характеристик машины и кто персонально из работников предприятия за ней закреплен для обслуживания.

В нерабочее время машины должны быть отключены от электросети.

На предприятии общественного питания на электрическом оборудовании имеют право работать лица, достигшие 18 -летнего возраста:

- прошедшие обучение и инструктаж по технике безопасности и безопасным приемам при работе с электрооборудованием;
- прошедшие медицинское освидетельствование не реже 4 раз в год;
- принятые на работу согласно приказу по предприятию и закрепленные за данным оборудованием;
- имеющие диплом или аттестат на право работать по специальности на предприятиях общественного питания.

16.7. ПОЖАРНАЯ БЕЗОПАСНОСТЬ

В нашей стране работает специальный орган но организации ножарной охраны - Главное Управление Государственный противопожарной службы МЧС России. В его задачу входят разработка и осуществление мероприятий по устранению причин возникновения пожаров.

Пожары, как правило, возникают в результате нарушения и пезнания правил пожарной безопасности. Поэтому для предупреждения пожаров важное значение имеет регулярный инструктаж о мерах пожарной безопасности и занятия по правилам пользования противопожарными средствами.

Производственные и складские помещения должны содержаться в чистоте и порядке. После окончания работы необходимо внимательно осмотреть электрооборудование (кроме холодильииков), которое должно быть выключено, газовое оборудовапие - отключено краном на внутреннем газопроводе. Цехи должแы быть тщательно убраны.

Выключатели, розетки, вилки, патроны и другая электроарматура должны быть исправны. В предохранителях должны быть แлавкие вставки соответствующего номинала.

Нслизя оставлять без присмотра включенное оборудование и :леклроириборы. По окончании работы надо отключать электричлское освещение (кроме аварийного).

Курить можно только в специально огведенных и оборудованнни местах.

Проходы, выходы, коридоры, лестницы, тамбуры необходимо солержать в чистоте, не загромождая тарой и другими предметами.

Предприятие должно иметь исправные первичные средства пожаротушения.

На предириятиях общественного питания основными причинами пожара могут служить: неосторожное обращение с огнем, пуловлетворительное техническое состояние электрооборудова-

ния, неисправность теплового оборудования и сушка на них спецодежды и т.д.

Основными способами тушения пожара являются охлаждение горючего вещества ниже температуры его воспламенения и изоляция его от доступа кислорода воздуха или другого окислителя, поддерживающего горение.

Большинство применяемых средств тушения пожара воздействует на очаг горения комплексно - прекращает доступ окислителя и препятствует передаче теплоты от пламени к горючему веществу, одновременно усиливая теплоотдачу в окружающую среду.

К основным средствам пожаротушения относятся вода, водяной пар, воздушно-механические и химические пены, инертные и углекислые газы, порошкообразные сухие составы из двууглекислой соды, песок, а также различные покрывала из асбеста, брезента и другие материалы. Пенными огнетушителями запрещается гасить возгорание электрооборудования, находящегося под напряжением.

Каждый работник общественного питания должен соблюдать действующие правила пожарной безопасности.

При обнаружении пожара или признаков горения (запах дыма, гарь, повышение температуры в помещении и т.п.) необходимо:

- прекратить работу и отключить с помощью кнопки "Стоп" (выключателя, рубильника, крана и др.) используемое оборудование и электроприборы;
- немедленно сообщить о пожаре по телефону службе пожарной охраны;
- принять меры по эвакуации людей, тушению пожара и сохранности материальных ценностей.

16.8. ТИІОВАЯ ИНСТРУКЦИЯ ІОО ОХРАНЕ 'ТРУДА П10BAPA

Общие требования безопасности. Во избежание несчастного случая па работе повар обязан выполнять инструкции по охране труда.

К работе в качестве повара допускаются мужчины и женщины не моложе 18 лет, прошедшие обучение по специальности.

На рабочем месте повар получает первичный инструктаж по требованиям безонасности труда и проходит стажировку по правилам эксплуатации закрепленного за ним технологического оборудования.

При эксплуатации газоиспользующего оборудования повар до назначения на самостоятельную работу обязан пройти обучение безопасным методам и приемам выполнения работ на этом оборудовании и сдать экзамены в установленном порядке.

Аля допуска к работе повар должен проходить:

- осмотр поверхностей тела, соприкасающихся с продуктами и инвентарем, на наличие заболеваний - ежедневно;
- обучение безопасности труда по действующему оборудованию - каждые 2 года;
- повторную проверку знаний безопасных методов труда и приемов выполнения работ в газовом хозяйстве - ежегодно;
- проверку знаний по электробезопасности - ежегодно;
- проверку санитарно-гигиенических знаний - ежегодно;
- периодический медицинский осмотр;
- повторный инструктаж по безопасности труда на рабочем месте - 1 раз в 3 мес.

Повар должен быть обеспечен индивидуальной санитарной олеждой, обувью и средствами индивидуальной защиты.

Аля предупреждения и предотвращения распространения же-лудочно-кишечных, паразитических и других заболеваний повар טбязан: коротко стричь ногти, тщательно мыть руки с мылом перед началом работы и при переходе от одной операции к другой. При изготовлении блюд, кулинарных изделий не допускается носиты квелириые изделия, покрывать ногти лаком.

Требования безопасности перед началом работы. Повар обязан во время работы носить полагающуюся ему санитарную олежду. Волосы должны быть убраны под головной убор, рукаВд одежды подвернуты до локтя или застегнуты у кисти рук. :孔прещено закалывать иголками санитарную одежду и держать " карманах булавки, стеклянные и другие бьющиеся и острые иредметы. Перед началом работы повар обязан привести в порялок свое рабочее место для безопасной работы и проверить:

- исправность и холостой ход оборудования:
- наличие и исправность ограждений;
- наличие и исправность заземления;
- исправность другого применяемого оборудования;
- убедиться, что переключатели электроплит и жарочного шкафа находятся в нулевом положснии;
- исправность и работу местной приточно-вытяжной вентиляции, воздушного душирования.

При обнаружении каких-либо неполадок или неисправностей в оборудовании повар обязан немедленно заявить заведующему производством или администрации предприятия и до устранения неисправностей к работе не присгупать.

Требования безопасности во время работы. Для предотвращения неблагоприятного влияния инфракрасного излучения на организм повар обязан:

- максимально заполнять посудой рабочую поверхность электрических плит, своевременно выключать секции электроплит или переключать их на меньшую мощность;
- не допускать включения конфорок на максимальную и среднюю мощность без загрузки;
- не допускать попадания жидкости на нагретые конфорки плиты;
- наплитную посуду необходимо заполнять не более чем на 80% от вместимости;
- не пользоваться наплитными котлами, кастрюлями и другой кухонной посудой, имеющей деформированные дно или края, непрочно закрепленные ручки или без ручек;
- снимать с плиты котел с горячей пищей без рывков, соблюдая осторожность, вдвоем, используя сухие полотенца или рукавицы; крышка котла должна быть снята;
- контролировать давление и температуру в тепловых аппаратах в пределах, указанных в инструкциях по эксплуатации:
- следить за наличием тяги в камере сгорания газоиспользующего оборудования и за показаниями манометров при эксплуатации оборудования, работающего под ддвлением.

Требования безопасности в аварийных ситуациях. При обнаружении неисправностей при работе с механическим, паровым, электрическим или газовым оборудованием, а также при срабатывании предохранительного клапана, выходе пара, подтекании воды нужно немедленно отключить оборудование, сообщить об

этом заведующему производством или администрации предприя‘гия.

до устранения замеченных неполадок приступать к работе здирещается.

Без разрешения администрации не разрешдется самому производить какой-либо ремонт оборудования иии устранять неисправноСГЕ.

Требования безопасности по окончании работы. После завершения работы необходимо обесточить все электрическое оборудование, за исключением дежурного освещения и оборудования, работающего в автоматическом режиме.

После отключения газоиспользующих установок снять накидные ключи с пробковых кранов.

При проведении санитарной обработки не охлаждать нагретую поверхность плит, сковород и другого теплового оборудования водой.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите организации, которые должны осуществлять контроль за соблюдением эаконов по охране труда.
2. Почему необходимо защитное заземление для электрического оборудования?
3. Назовите возможные причины несчастных спучаев на производстве.
4. Какие инструктажи по технике безопасности должны проводить на предприятии общественного питания?
5. Какие требования безопасности должен собпюдать повар во время работы?

Глава 17

ОБОРУДОВАНИЕ ЗАРУБЕЖНЫХ ПРОИЗВОДИТЕЛЕЙ

17.1. УНИВЕРСАЛЬНЫЕ ПРИВОДЫ

Импортное оборудование на предприятиях общественного питания используется широко, особенно в настоящее время, так как многие предприятия строятся с участием иностранных фирм.

Рассматриваемое в этой главе оборудование производится в странах Европейского сообщества, выпускается компаниями с многолетним опытом работы в своей области и высокой мировой репутацией.

Все оборудование, выпускаемое этими фирмами, сертифицировано на соответствие стандартам качества РФ и стандартам качества стран Европейского сообщества (знак соответствия СЄ).

Универсальный привод представляет собой устройство, состоящее из электродвигателя, редуктора и комплекта сменных исполнительных механизмов.

Маиина универсальная кухонная с привоgом MKN-IV (Польша) (рис. 17.1) состоит из привода и комплекта сменных исполнительных механизмов.

Технические характеристики машины универсальной кухонной с приводом MKN-IV

Частота вращения приводного валд, об/мин 185
Мощность, кВт .. 1,1
Напряжение, В .. 380
Частота вращения рабочего вала, об/мин .. 1390
Габаритные размеры, мм:
Аина .. 500
ширина ... 270
высота ... 330
Macca, кг.. 40

274

Рис. 17.1. Машина универсальная кухонная с приводом MKN-IV: 1 - крышка редуктора; 2 - разбрызгиватель масла: 3 - винт; 4 - горловина: 5 - редуктор; 6 - приводной вал; 7 - электродвигатель

Рис. 17.ᄅ. Мясорубка МКМ-82: 1 - упорное копьцо; 2- зажимная гайка; 3 и 5 - ножи; 4- ножевая решетка; 6 - загрузочная чаша; 7 топкатель; 8 - корпус; 9 - 山нек; 10~шайба

275

Рис. 17.3. Кофемопка МKK-120: 1 - шнек; 2 - корпус; 3 - вал; 4 и Я - резервуары; 5 - неподвижный жернов; 5 - подвижный жернов; 7крышка; 8 - регулировочнәя гайка

Рис. 17.4. Механизм дпя протирания супов MKZ-20:
1 - бак; 2 - болт крепления; 3 и 7 коническая пара; 4 - присоединительный вал; 5 - корпус; 6 - вертикальный вал: 8 - попасть: 9 - сито

Рис. 17.5. Механизм для нарезания картофеля MKKF-270:
1 и 8 - коническая пара; 2 и 7 - валы; З - ножевая решетка; 4 - загрузочная воронка; 5 - барабан; 6 - кожух; 9 - корпус
276

Рис. 17.6. Механизм для нарезания колбасных иэделий и хлеба MKW-250:

1 - механизм регулировки топщины нарезания; 2 - толкатель; 3. - дисковый нож; 4 - кожух; 5-основание; 6 - коргус; 7 - передвижной стол

Рис. 17.7. Механизм для нарезания сырых овощей MKY-250 [a], набор режущего инструмента (6]:
1 - крышка; 2 - специальная гайка; З - опорный диск с режущим инструментом; 4 - вал; 5 - гайка регулирования; 6 - корпус

б

Рис. 17.8. Механизм для взбивания и переметиивания МКР-25:
1, 7 и 8 - взбиватепи; 2 - бачок; 3 и 6 - узлы планетарного механизма; 4 коробкаскоростей; 5 - корпус

Pис. 17.9. Механизм для натирания сыра MKT-150:
1-корпус; 2 - вал; 3-тероч-
ный стакан; 4 - топкатель

278

Рис. 17.10. Универсальный привод MTR

Универсальный привод состоит из двухступенчатого зубчатого редуктора с прифланцованным к нему электродвигателем.

Исполнительные механизмы подсоединяются к выходному валу редуктора с фасонным пазом и крепятся к горловине винтом.

Комплект сменных исполнительных механизмов (рис. 17.2...17.9) состоит из упиверсального привода MKN-IV, мясорубки MKM-82, кофемолки MKK-120, механизмов для протирания супов MKZ-20, для нарезания картофеля MKKF-270, для нарезания кол-

Табпица 17.1. Характеристики сменных механизмов оборудования предприятий общественного питания зарубежного производства

Механизм	Общий вид	Параметры
Мясорубка Z-104		1 нож, 1 решетка с диамет- ром отверстий 3 мм. Про- изводительность 50 кг/и, масса механизма 1 kr
Мельница для специй и кофе Z-105		Низкая скорость жернова препятствует перегреву кофе, а также позволяет использовать насадку для получения из сахара сахарной пудры. Производительность по кофе 20 кг/ч; масса ме- ханизма 4 кг

Продолжение табл. 17.1

Механизм	Общий вид	Параметры
Шиековая соковыжималка Z-110		Авгоматически отсеиваются зерна и кожура. Масса механизма 7 кг
Овощерезка Z-102		Стандартная комплектация: слайсер с регулируемым зазором, нож для нарезания брусочков (жульенов) и терка. Производителиность 150 кт/ч; масса механизма 5 кг
Планетарное перемешивающее устройство Z-108		Стандартная комплектация: пругковый взбиватель, спиральный перемешиватель для теста, рамная мешалка. Съем. ная дежа вместимостью 10 д; масса механизма 11 kr
Протирочное устройство Z-103 для протирания вареных овощей и приготовления овощных пюре	$=\sqrt{7}$	Производительность 300 кг/ч; масса механизма 9 кг
Измельчитель мя сухарей и твердого сыра Z-101		Масса механизма 7 кг

280

Окончание табл, 17.1

Механизм	Пбщий вид	Пиамететры 200 мм; Ножеточка $\mathrm{Z}-115$
мирина 25 мм;		
масса механизма 4 kr		
$\mathrm{Z}-111$		

Ђасных изделий и хлеба МKW-250, для нарезания сырых овощей MKY-250, механизма для взбивания и перемешивания MKP-25, механизма для натирания сыра МКТ-150.

Универсальньй привод MTR (Великобритания) (рис. 17.10) и различные функциональные насадки к нему позволяют сэкономить значительные средства и производственные площади при оборудовании профессиональной кухни средней производительности.

Благодаря большой массе универсальный привод не нуждается в специальном креплении к рабочей поверхности стола.

Понижающая передача рабо'гает, погруженная в минеральное масло, которое необходимо менять на реже 1 раза в год.

Силовая часть редуктора управляется схемой, рассчитанной на папряжение 24 В в соответствии с последними требованиями безонасности ЕЭС.

Универсальный привод изготовляется в двух вариантах электропитания: 220 и 380 В с одной или двумя скоростями вращения. Корпус универсального привода и все функциональные насадки, d гакже детали выполнены из анодированного алюминия.

В настоящее время на предприятиях общественного питания используются импортные сменные исполнительные механизмы, иредставленные в табл. 17.1.

17.2. ЭЛЕКТРОМЯСОРУБКИ И КУТТЕРЫ

Итальянская фирма FHMH производит профессиональные электромясорубки (рис. 17.11), сертифицированные на соответствие требований и нормативов безопасности Европейского сообщества. Мясорубки мало различаются габаритными размерами, но имеют разную производительность (табл. 17.2).

Мясорубка предназначена для помола мяса любого сорта, в том числе с жилами, и пищевых смесей без содержания вкючений, способных вызвать деформацию металлических деталей аппарата. Эта мясорубка является источником повышенной опасности, поэтому неквалифицированное ее использование може'т привести к тяжелым последствиям: порезам и электрическим травмам.

Мясорубка рассчитана на эксплуатацию в сети однофазного переменного тока на напряжение 220 В с частотой 50 Гц или трехфазного переменного тока на напряжение 380 B с частотой 50 Гц с раздельным нулевым проводом и контуром заземления.

Перед началом работы особое внимание нужно обратить на правильность сборки: первой устанавливается подрезная решетка, при этом сторона с большим диаметром отверстий должна быть обращена к шнеку, далее устанавливдется двухсторонний нож, затем решетка с круглыми отверстиями и шайба. Запрещается перетягивание стопорной шайбы, что сопровождается заклиниванием ножа или его медленным вращением.

Перетягивание стопорной гайки, неправильная установка ножей и эксплуатация мясорубки в этом состоянии могут привести к серьезным повреждениям двигателя, редуктора, шнекд.

При работе на электромясорубке запрещено:

- разбирать машину при включенном двигателе;
- включать разобранную машину;
- блокировать систему безопасности;
- помещать посторонние предметы в горловину мясорубки;
- проталкивать мясо руками в горловину мясорубки;
- перегружать машину продуктами.

При останове мясорубки из-за блокировки шнека и ножей немедленно отключите двигатель, разберите машину, устраните причину и только после этого приступайте к дальнейшей работе.

282

a

B

6

Рис. 17.11. Электромясорубки FНМН:
a - TS8; σ - TS12; a - TI12; r-TI32

Мясорубка снабжена линейным понижающим редухтором, ногруженным в масло. Все рабочие элементы: корпус, шнек, фиксирующее кольцо, самозатачивающиеся ножи, решетки выполнепы из нержавеющей стали. Низковольтный переключатель на 24 В, как и вентилируемый двигатель, является стандартом для нсех моделей. Это требование стандартов безопасности РФ.

Электромясорубка TS8 комплектуется односторонним ножом и решеткой; TS12-TI12 и TS22—TI22 имеют по две решетки и по одному одностороннему ножу; электромясорубка ТІ32 комплекту"'ся двумя двухсторонними ножами, подрезной, центральной и нлходной решетками.

Таблица 17.2. Технические характеристики электромясорубок фирмы FHMH (Италия)

Показатель	Модель мясорубки			
	TS8	TS12-TI12	TS22-TI22	TI32
Мощность, кВт	0,35	0,75	0.75	2
Производительность, кг/ч	50	180	180	550
Габаритные размеры, мм:				
длина	300	380	380	450
пирина	340	220	220	470
высога	240	430	430	470
Масса, кг	8	18	18	25

Мясорубка снабжена тепловой защитой двигателя, которая срабатывает при его перегрузке или блокировке.

Аля возобновления работы необходимо полностью обесточить машину, устранить причину перегрузки и только после того, как двигатель остынет, продолжить работу.

При проведении любых работ по санитарному обслуживанию мясорубки нужно убедиться в том, что она отключена от сети. Aля работы с мясорубкой допускаются лица, за которыми закреплен данный аппарат, прошедшие инструктаж по технике безопасности.

Куттеры. Куттер - необходимый элемент современного предприятия общественного питания, который позволяет в течение не более чем за 4 мин приготовить тонкие соусы, крем-супы, паштеты, измельчить мясо, зелень, приготовить майонез, тесто и др.

Куттер мояели CL-5 (рис. 17.12, а) фирмы Fimar (Италия) состоит из электродвигателя и горизонтального ножа, предназначенного для тонкого измельчения и перемешивания овощей и мяса.

Куттер имеет цилиндрическую рабочую камеру вместимостью 3 л и вертикальный рабочий вал, к которому крепится серпообразный двухлезвенный нож, вращающийся с частотой 1400 мин $^{-1}$, трехфазный электродвигатель одно- или двухскоростной, низковольтную электронную панель управления из поликарбоната с регуляторами пуска, остановки, переключения скоростей и цикличности работы в прерывистом режиме.

Рис. 17.12. Куттеры моделей CL-5 (а) и R-23 [б)
Безопасность работы куттера обеспечивается двумя шереключателями установленными на крышке и на основании коробки, исключающими возможность включения электродвигателя при открытой крышке, а также устройством торможения двигателя.

Рабочая камера куттера изготовлена из полированной хромоникелевой нержавеющей стали.

Куттеры серии CL имеют резиновые ножки для установки на ироизводственных столах.

Куттер модели R-23 (рис. 17.12, б) фирмы Robot coupe (Франция) выпускают в напольном изготовлении. Его рекомендуется использовать для производства мясных и кондитерских изделий.

Куттер имеет чашу вместимостью 60 л и производительность от 3 до 30 кг продукции за одну загрузку. Дополнительно может быть снабжен устройством для создания вакуума в чаше в прощессе работы. Хорошо сбалансированная конструкция полностью выполнена из нержавеющей стали. Наклоняющаяся съемная чаша облегчает процесс выгрузки и очистки. Панель управления снабжена таймером. Патентованный профиль ножей позволяет แырабатывать качественный однородный продукт при работе лыже с его минимальным количеством.

Технические характеристики куттеров рассмотренных моделей приведены далее.

Технические характеристики куттеров моделей CL-5 и R-23

Mogerb	Габаритнве	Напряжение,	Мощность,	Macca,
	размерьи, мм	B	$\kappa \mathrm{Bm}$	Ki
C.L-5	$240 \times 310 \times 460$	380	0.9	19
R-23	$250 \times 700 \times 600$	380	4.5	21

17.3. КАРТОФЕЛЕОЧИСТИТЕЛІЬНЫЕ МАШИНЫ

Компания YMC (Великобритания) выпускает универсальные машины для очистки овощей и фруктов.

Отличительными свойствами картофелеочистительных машин компании YМС являются качество и надежность (подтвержденные сертификатом), современная безупречная функциональная конструкция и простота в обслуживании.

Компания YMC производит три серии очистительных машин: серия V - настольная, предназначенная для использования на кухнях с дефицитом площади; серия M - стационарная, наиболее популярная благодаря полному решению вопроса сбора отходов очистки и наличию возможности замены дисков (шесть сменных дисков) и, как следствие, - уникальная многофункциональность. Эта серия выпускается компанией в трех моделях: M5, M10, M15 (табл. 17.3); серия S - стационарная, предназначенная только для очень интенсивного использования машины при обра-

Табпица 17.3. Технические характеристики
картофелеочистительных машин компании YMC (Вепикобритания]

Параметр	Модель		
	М5	М10	M15
Моцность, кВт	0,25	0,37	0,37
Сила тока, А	10	15	15
Производительность, кг/ч	130	280	400
Загрузка картофеля, кг	5	10	15
Габаритные размеры, мм:			
длина	225	285	285
ширина	333	448	448
высота	268	335	335

286

ботке болышого количества продукции на фабриках, выпускающих полуфабрикаты.

Серия V (настольная серия). Конструкция машины выполнена из металического сілава, покрытого толстым пластификатом, округлые края конструкции делают машину удобной в эксплуатации. Благодаря неболыной высоте машины и малой массе ее ле1ко можно перемецать с рабочей поверхности стола на его нижнюю полку. Машина очень проста по конструкции. Установка, использование и обслуживание не требуют значительных затрат времени и средств. Труба сброса отходов может быть установлена с правой или левой стороны машины. Механический таймер, низковольтное управление, встроенный штуцер для подачи свежей воды и сброса отходов надежны в эксплуатации. Эта серия имеет ременную тередачу.

Технические характеристики картофелеочистительных машин серии V компании YMC (Великобритания)

\qquad
Мощность, кВт
0,25
Напряжение. В ... 220
Сила тока, А .. 10
Продолжительность очистки, мин 1 ... 2
Серия М. Машины этой серии гарантируют идеальную чистоту вокруг места эксплуатации, что очень важно при их использовании на кухне, где совмещены сырьевой и тепловой циклы обработки пищи.

В стандартную комплектацию машины данной серии входят: карборундовый диск для очистки картофеля, низковольтный перекиючатель и таймер, размещенные на лицевой панели машины, устройство с фильтром для отходов, полная магнитная защита. Конструкция выполнена из нержавеющей стали. Напряжение питания 200 B .

17.4. ЭЛЕКТРИЧЕСКИЕ КОТЛЫ

Фирма Falcon (Великобритания) выпускает две серии электрических пищеварочных котлов (табл. 17.4). Классические - круглые котлы серии $\boldsymbol{E} 3078$ (рис. 17.13) и прямоугольные котлы серии E3080 (рис. 17.14).

Каждая серия, в свою очередь, подразделяется на котлы непосредственного нагрева и котлы так называемого двойного применения. В котлах двойного применения основная ванна может

Таблица 17.4. Технические характеристики зпектрокотлов серии E3078, EЗ080 фирмы Falkon (Велико6ритания]

Модель	Мощность, кВт	Максимальный размер по выступа- ощим частм, мм	Высота, мм	Масса, кг
E3078-45 (Е3078-45/30)	7	991	927 (953)	86 (93)
E3078-90 (Е3078-90/70)	11,5	1060	$927(960)$	$122(131)$
E3078-136	14,5	1130	$953(960)$	$145(156)$
E3080-45 (E3080-45/30)	7	805	900	$101(106)$
E3080-90 (E3080-90/70)	11,5	900	900	$142(153)$

Рис. 17.13. Электрический котел серии ЕЗО78

Рис. 17.14. Эпектрический котел серии ЕЗО8О

использоваться как котел непосредственного нагрева; в нее может быть вставлена емкость меньших размеров, в этом случае основная ванна через специальное отверстие заполняется водой и после закипания играет роль пароводяной рубашки, которая равномерно нагревает емкость меньших размеров. В таких котлах можно варить весь перечень блюд.

Котлы двойного применения можно использовать как котлы прямого нагрева, так и в качестве котлов с пароводяной рубагшкой, что возможно благодаря наличию съемной вкладывающей емкости.

Нагревательные элементы (ТЭНы) расположены в основании ванны и контролируются регулятором, позволяющим эффективно управлять температурой от слабого подогрева до интенсивного кипения.

Корпус и ванна выполнены из нержавеющей стали. Котел имеет легкосъемную снимаюшуюся крышку и полку для нее.

Высокоэффективная теплоизоляция минимизирует потери тепла в окружающую среду и позволяет экономить электроэнергию.

Табпица 17.5. Технические характеристики пищеварочных электтрокотлов фирмы «Метос» [Финляндия)

Параметр	Марка котлов					
	Викинг			Финнкинг		
	4 C	6C	8C	125	200	300
Вместимоств، ^	40	60	80	125	200	300
Мощность, кВт	9	10,5	12	20	30	36
Напряжение, В	380	380	380	380	380	380
Максимальное давление в рубашке, МПа	0,1					
Габаритные размеры, мм:						
Алина	980	980	980	1390	1390	1390
высо'ta	580	580	580	1030	1030	1030
ширина	920	920	920	885	985	1150
Macca, кг	75	80	85	240	270	300

Краны и другая арматура, установленная на котле, хромированы, что улучшает санитарное обслуживание и эстетику оборудования.

Фирма Falcon выпускает котлы вместимостью от 30 до 136 л. В названии модели последние цифры соответствуют рабочему объему котла в литрах; цифры, данные через дробь, указывают на двойное применение котла и соответствуют рабочему объему в положении прямого нагрева и пароводяного подогрева и отражают объем в литрах.

Фирма «Метос» (Финляндия) выпускает электрические лицеварочные котлы серии «Викинг 4C, 6С, 8С» вместимостью соответственно $40,60,80$ л и "Финнкинг 125, 200, 300» вместимостью соответственно 125, 200 и $300 \wedge$ (табл. 17.5).

Варочные сосуды котлов выполнены из нержавеющей стали и имеют цилиндрическую форму. Они могут вращаться вокруг горизонтальной оси. Внешняя облицовка котла, тумб и крышка выполнены из листовой нержавеющей стали.

По конструкции и принципу действия в основном они андлогичны отечественным электрическим пищеварочным котлам.

17.5. ЭЛЕКТРОСКОВОРОДЫ

В настоящее время предприятия общественного питания все чаще стали приобретать импортные электросковороды.

Электросковороgы фирмы Falcon (рис. 17.15) выпускаются Авух типоразмеров с ручным (E1962, E1994) или электрическим

Рис. 17.15. Электросковорода Е1962

Таблица 17.6. Массогабаритные характеристики электросковород фирмы Falcon

Параметр	Модель			
	E1962	E1965	E1994	E1995
Внутренние размеры ванны, мм	$500 \times 530 \times 140$		$800 \times 530 \times 140$	
Габаритные размеры, мм:				
длина	600	900		
глубина	770	770		
высота	870	870		
Масса, кг	123	165		

(E1965, Е1995) опрокидыванием ванны ('Іабл. 17.6). Прочная рамная конструкция, литгая ванна из полированного чуıуна, основные элемен'ты конструкции выполнены из нержавеющей стали. Электросковорода - многофункциональный кухонный прибор, который может быть использован для приготовления супов, пассеровки, тушения, жаренья и прочих способов приготовления различных блюд. Установленный симмерстат позволяет точно регулировать температуру. Округлая форма ванны, внешняя конструкция и ножки высотой 150 мм соответствуют самым строгим гигиенитеским требованиям. При опрокидывании ванны специальный датчик автоматически отключает нагревание.

17.6. ХЛЕБОРЕЗАТЕЛЬНЫЕ МАШИНЫ

Машина хлеборезательная АХМ-300Т (рис. 17.16) производится в Болгарии. Она состоит из привода, механизма резания, механизма подачи, приемного и разгрузочного устройств, электропусковых и блокировочных устройств. Вращение от электродвигателя 17 через двухступенчатую клиноременную передачу передается на серповидный нож 8. От главного вала через эксцен'грик 22, шатун 13 и кривошип, выполненный в виде муфты обгона 12, вращение получает промежугочный вал с ведуцей шестеренкой конической передачи. Ведомая коническая шестерешка передает вращение цепной передаче. На цепи этой передачи устдновлены два пальца. Один палец, двигаясь с цепью, перемеща-

B

Рис. 17.16. Машина хлеборезательная АХМ-3ООТ:
a - вид спереди; б - вид сбоку; в - вид по Б; г - кинематическая схема: 1 - разгрузочный лоток; 2 и 4 - кожуха; 3 - ограждение; 5 - двухкнопочный выключатель; 6 - дверца; 7 - корпус; 8 и 28 - серповидный нож; 9 и 27 - выталкиватепь; 10 - ящик для сбора крашек; 11 - двухкнопочный выкпючатепь; 12 и 24 - муфта обгона; 13 и 23 - шатун; 14 - блокировочный выкпючатель; 15 - регулятор; 16 - штепсельный разьем; 17 электродвигатель; 18... 21 - шкияы клиноременной передачи; 22 - эксцентрик; 25 и 26 - коническая пара; 29 - пружина; 30 и 31 - звездочки; 32 - цепь

ет выталкиватель 9 с хлебом в направлении к ножу. По достижении конечного положения палец освобождает выталкиватель и он под действием пружины 29 возвращается в исходное положение, а концевой выключатель останавливает машину.

Серповидный нож машины рекомендуется периодически очищать от крошек налипшего хлеба и производить по потребности заточку. При проведении санитарной обработки нужно обязательно отклютить машину от напряжения электрической сети и
для удаления крошек хлеба использовать только специальныещетки или деревянные лопатки.
Технические характеристики хлеборезательной машины AXM-300T
Производительность, батонов/ч, при толщине ломтиков: 5 мм 85
10 мм 160
15 мм 220
20 мм 300
25 мм 340
Угол нарезания, град. 90
Максимальные размеры нарезки (ширина \times высота), мм 160×140
Напряжение, В 380
Мощность, кВт 0,37
Габаритные размеры, мм:
длина 1000
ширина 586
высота 536
Macca, кг 75

17.7. ЭЛЕКТРИЧЕСКИЕ ПЛИТЫ

Фирма Falcon производит большое количество электрических плит различной модификации (рис. 17.17). Основными моделями являются электроплиты марок E1100-4, E1120-4, E1100-G (табл. 17.7).

Каркас и облицовка электроплит изготовлены из нержавеющей стали.

Чугунные прямоугольные конфорки, используемые в электроплитах, обладают пониженной инерционностью и возможностью быстрого нагрева поверхности до температуры $580^{\circ} \mathrm{C}$.

Полированная поверхность позволяет максимально интенсифицировать процесс теплопередачи от конфорки к кухонной посуде, снизить теплопотери в окружающую среду.

Электрические плиты выпускаются с чугунными конфорками и комбинированные, в которых сплошная конфорка комбинируется с двумя круглыми менее инерционными и более экономичными конфорками.

В электроплитах все элементы конструкции рассчитаны на продолжительную эксплуатацию на предприятиях общественного питания.

Включение электроплиты производится с помощью специальных усиленных шестипозиционных регуляторов степени нагре-

Pис. 17.17. Электрические ппиты фирмы Falcon:
а-E1100-4; б - E1120-4 и в - E1100-G

ва. Конфорки и жарочный шкаф имеют хорошую теплоизоляцию.

В моделях марки G все конфорки или их часть заменены на гриль непосредственного жаренья.

В модели Е1102 вместо духового шкафа установлен конвективный шкаф, когорый позволяет готовить блюда с экономией времени на $30 . . .40 \%$.

Параметр	Молель		
	E1100.4	E1120-4	E1100-G
Потребляемая мощность прямоугольной чутунной конфорки, кВт	3,5	3,5	-
Потреблнемая мощность круглой конфорки, кВт	-	2	2
Объем духового шкафа, л	140	-	140
Потребляемая мощность лухового шкафа, кВт	5,5	-	5,5
Габаритные размеры, мм: мина нирина высота	$\begin{aligned} & 900 \\ & 770 \\ & 870 \end{aligned}$	$\begin{aligned} & 900 \\ & 770 \\ & 870 \end{aligned}$	$\begin{aligned} & 900 \\ & 770 \\ & 870 \end{aligned}$
Macca, кг	154	108	178

294

17.8. КОФЕВАРОЧНЫЕ АППАРАТЫ

Кофеварка серии Portofino моgели Mithos-P2 (рис. 17.18) производится итальянской фирмой Brasilia. Этот аппарат сертифицирован на соответствие требований и нормативов безопасности Европейского сообщества (знак соответствия СЄ).

Кофеварка предназначена для производства кипятка, кофе эспрессо, капучино, латте, а также для разогрева и сушки чашск.

Устройство аппарата, материалы, применяемые при изготовлении, позволяют использовать его на протяжении многих лет без каких-либо затруднений.

В качестве конструкционных материалов при изготовлении технологической части кофеварки используются хромированная латунь и нержавеющая сталь. Стандартный цвет панелей пастельносерый.

Кофеварка является источником повышенной опасности, поэтому несоблюдение правия работы на ней может привести к тяжелым последствиям: ожогам и электрическим травмам.

Для длительного срока службы кофеварки очень важно качество воды, подаваемой для приготовления кипятка. Вода, содержащая значительное количество минеральных солей и механических примесей, может стать причиной блокировки некоторых трубок и привести к внезапным выбросам пара и кипятка, что очень опасно.

Рис. 17.18. Кофеварочный аппарат Mithos-P2

Фирма Brasilia выпускает целый ряд кофеварочных аппаратов, которые различаются между собой только панелью управления, количеством фильтрующих групп (с $1 . .4$ группами) и объемом бойлера, а в остальном они аналогичны.

Модели серии P - полуавтоматические, т.е. при приготовлении порции кофе необходимо контролировать процесс приготовления и по наполнении чашек вручную отключать помпу.

В моделях серии Dig отключение помпы автоматическое, на основании показаний объемного датчика. Объем порций настраивается на рабочей панели.

Кофеварка работает от сети напряжением 220 В при частоте тока 50 Гц с заземлением. При значительных колебаниях напряжения и частоты тока (более 5% от требуемых параметров) внезапные отключения и включения могут привести к поломкам электронных средств автоматики.

Электрическая схема аппарата имеет два силовых контура:

- для осуществления операций электрических компонентов;
- нагревательных элементов бойлера.

На кофеварке установлен трехпозиционный переключатель: положение «0» - электроэнергия не подводится к внутренним компонентам; положение «1» - электроэнергия подводится только к электрическим компонентам; положение «2» - электроэнергия подводится к электрическим компонентам и нагревательным элементам.

Кофеварка Mithos-P2 включает в свой состав следующие основные элементы.

Бойлер (котел), используемый для нагрева воды и приготовления перегретого пара.

Фильтровальные группы предназначены для стыковки с фильтрами, содержащими молотый кофе, и для приготовления кофе, когда через них подается пароводяная смесь.

Теплообменники по одному для каждой группы проходят через котел и предназначены для быстрого нагрева воды без внесения дисбаланса в тепловое равновесие всей системы.

Источники теплоты: в стандартных машинах установлены обыкновенные ТЭНы, которые нагревают воду в бойлере.

Электрическая помпа служит дяя повышения давления в системе до уровня 9 бар, что идедльно подходит для пслучения наилучших результатов при приготовлении кофе эспрессо.

Отвод и подача пара используются для взбивания молока, применяемого при приготовлении капучино, латте, для нагрева воды,

пунша, шоколадных напитков. Пар отбирается из верхней части бойлера.

Отвод и подача кипятка используются для приготовления чая и прочих напитков. Кипяток подается из нижней части бойлера.

На кофеварке установлены следующие контрольные приборы:

- манометр - показывает текущее давление воды в бойлере и операционное давление помпы;
- датчик давления - контролирует давление в бойлере и автоматически включает нагревательные элементы в случае его понижения; поддерживает температуру воды в бойлере на постоянном уровне;
- указатель уровня - служит для визуального контроля уровня воды в бойлере;
- микропроцессор - используется для автоматического прекращения наполнения чашки по ее заполнении.

Кофеварка предназначена для эксплуатации искючительно в закрытом помещении, устанавливается на горизонтальной поверхности в устойчивом положении.

Наилучшие результаты работы получаются при температуре окружающего воздуха $20^{\circ} \mathrm{C}$ и температуре воды $10^{\circ} \mathrm{C}$.

Однако кофеварка может нормально работать при температуре окружающей среды от 10 до $30^{\circ} \mathrm{C}$ и температуре воды от 3 до $25^{\circ} \mathrm{C}$.

Правила эксплуатации кофеварки. Подкючитькофеварку к водопроводу и электрической сети. Переключатель установить в положение "1" и заполнить бункер кофемолки зернами кофе в достаточном количестве.

Если аппарат снабжен автоматическим датчиком контроля уровня воды, то соленоидный клапан автоматически откроется и по окончании заполнения бункера водой автоматически закроется.

Если предусмотрено ручное заполнение бойлера водой, необходимо нажать кнопку включения воды и, удерживая ее в нажатом состоянии, через смотровое окно контролировать заполнение водой до отметки «мin». По окончании заполнения бойлера водой отпустить кнопку. Повернуть основной переключатель в положение "2», включить нагревательные элементы. Когда уровень напитка в чашке достигнет требуемого объема, нажать на эту кнопку еще раз для остановки экстракции.

В процессе работы необходимо периодически контролировать по датчику давление в бойлере, которое должно составлять
$0,9 \ldots 1$ бар, и текущее давление, создаваемое помпой, которое должно находиться в пределах 8,5... 9 бар.

После окончания работы кофеварку отключают от электрической и водопроводной сети.

При ежедневном обслуживании нужно обязательно проводить следующие операции:

- очищать решетки групп, прокладки групп, держатели фильтров, фильтры, протирая влажной губкой и потом сухой чистой тканью;
- при необходимости фильтры и держатели фильтров промывать в горячей воде или в растворе специального моющего средства, растворяющего смолистые вещества кофе;
- тщательно очищать отверстия для отвода пара в пароотводе после его использования, так как многие нагреваемые паром продукты могут блокировать это отверстие, а остатки этих продуктов, попадая вместе с паром во вновь разогреваемый продукт, могут изменить его вкус и цвет;
- тщательно протирать корпус кофеварки, используя мягкую чистую тряпку, смоченную в растворе моющего средства, а затем насухо протирать сухой тканью;
- при санитарной обработке запрещается использовать абразивные чистящие материалы.

Приготовление кофе эспрессо. Вынуть держатель фильтра из группы и освободить от отработанного кофе пуутем леткого постукивания перевернутого держателя фильтра. Незначительное количество остающегося отработанного кофе на фильтре после этой операции не сказывается на вкусе вновь приготовленного кофе. Для наполнения фильтра свежемолотым кофе поместить держатель фильтра в специальное гнездо, расположенное под дозирующим отверстием кофемолки, и только потом передвинуть ручку дозатора движением на себя 1 раз для обычного кофе или 2 раза для двойного.

Держатель фильтра, наполненный кофе, вынуть из кофемолки, используя трамбователь; кофе распределяется равномерно по площади фильтра и слегка ушлотняется. При установке держателя фильтра к группе необходимо предварительно очистить края фильтра от молотого кофе, так как это может вызвать затруднения при ее обратном вынимании.

Поставить предварительно нагретую чашку под держатель фильтра, нажать соответствующую кнопку на панели управления для приготовления кофе эспрессо.

Аля получения отличных результатов при приготовлении кофе эспрессо необходимо соблюдать следующие условия:

- должна использоваться чистая свежая вода;
- температура воды в бойлере должна быть $100 \ldots 130^{\circ} \mathrm{C}$;
- продолжительность приготовления чашки кофе не должна превышать 30 с;
- масса молотого кофе не должна превышать 7 г;
- необходимо постоянно контролировать чистоту дозирующего узла кофемолки.

Если при приготовлении кофе эспрессо напиток выливается слишком тонкой струей или медленно, то это означает, что кофе смолото слишком тонко. Нужно проверить правильность регулировки помола на кофемолке.

Процесс приготовления кофе эспрессо сопровождается принудительным прокачиванием пароводяной смеси, находящейся под повышенным давлением, через слой кофе. В случае, если контакт кофе с водой превышает 30 c , приготовленный напиток приобретает неприятный горький вкус.

Не рекомендуется заранее заполнять фильтр свежемолотым кофе и вставлять его в группгу кофеварки, оставляя фильтр там на некоторое время без немедленного приготовления напитка. Группа сильно разогревается и кофе, находящийся в фильтре, начинает быстро пригорать, теряя свой аромат. Напиток, получаемый при этом, не имеет характерного аромата и горький на вкус.

Перед наполнением чашки напитком обязательно нужно разогреть ее, ополоснув в кипятке или обдав паром. В неподогретых чашках кофе быстро остывает, теряя свой аромат.

Кофеварочный annapam "Омниа-люкс" (Венгрия) (рис. 17.19) предназначен для приготовления кофе путем пропускания через порошок кофе горячей воды, находящейся под высоким давлением. Он имеет несколько молификаций, изготовляемых с одним четырьмя кранами и управляемыми соответствующими кнопками (табл. 17.8).

Принцип работы и конструкция различных модификаций аппарата одинаковы. Вода из водопроводной сети поступает в насос аппарата, с помощью которого ее давление повышается до $0,6 \ldots 0,9$ Па, а затем подается в цилиндрический водогрейный котел.

Нагрев воды в котле осуществляется ТЭНами, работа которых контролируется автоматически по давлению пара в котле.

Рис. 17.19. Кофеварочный аппарат «Омниа-люкс»:
а - вид спереди: б - вид слева: 1 - боковая облицовка; 2 - кофеварочный кран; 3 - сигнальная пвмпа; 4 - паровой кран; 5 - манометр давления воды в водопроводной сети; 6 - кнопка откпючения; 7 - кнопка включения; 8 - лицевая облицовка; 9 - подогреваемый поддон для стаканов; 10 - ограничитепь для стаканов: 11 - манометр давпения в котле; 12 - кран горячей воды; 13 - указатель уровня воды; 14 - спивной патрубок; 15 - сливной кран котлв; 16 - предохранительный клапан; 17 - поддон; 18 - кабель электродвигателя; 19 - входной кабель; 20 - выключатель; 21 - плавкий предохранитель; 22 - боковина котла; 23 - ТЭН: 24 - термоограничитель; 25 - боковая рама; 26 - реле давления

300

Тпюлица 178 Технические характеристики кафеварочных аппаратов «Омниа люкс»				
Параметр	Тип кофеварки			
	AF-1	AF-2	AF-3	AF-4
Число кранов, пот.	1	2	3	4
Вместимость котла, л	6	12	18	24
Число ТЭНов, шт.	1	2	2	2
Мощность ТЭНов, кВт	1,6	3,6	5	6
Напряжение, В	220			
Рабочее давление в котле, МПа	0,13...0,17			
Давление, создаваемое насосом, МПа	0,8... 1			
Габаритные размеры, мм:				
Алина	455	660	870	1080
ширина	525	525	525	525
высота	450	450	450	450
Производительность, доз/ч	130	260	390	520

Аппарат имеет систему защиты ТЭНов от «сухого хода», т.е. в цепи каждого ТЭНа установлен контакт теплового ограничитеАя, который размыкается в случае включения ТЭНов без воды и нагревания выше допустимой температуры.

Перед включением аппарата в работу котел заполняют водой до верхней риски, отмеченной на указателе уровня воды. В процессе работы необходимо постоянно контролировать, чтобы уровень воды в котле всегда находился в пределах границ, отмеченных на указателе уровня воды рисками.

Процесс приготовления кофе начинается с наполнения порошком кофейной чаши, причем нужно следить за тем, чтобы на бортах фильтра не оставался кофе, так как в этом случае при установке чаши на место может образоваться неплотное соединение.

Аля начала варки надо нажать на красную кнопку. В этом случае одновременно с открытием крана начинает работать насос повышения давления, в результате чего горячая вода продавливается через порошок кофе.

Заканчивается процесс приготовления кофе нажатием на вторую кнопку (другого цвета).

17.9. ЭЛЕКТРОФРИТЮРНИЦЫ

Фирма Falcon производит электрофритюрницы двух моделей с рабочим объемом 16 и 35 л и соответственно с одной или двумя корзинами (табл. 17.9).

Электрофритюрница E1830 (рис. 17.20) выполнена из нержавеющей стали, снабжена низкоинерционным газовым термостатом и специальным защитным термостатом, предотвращающим перегрев масла.

Специальная конструкция ванны с увеличенной холодной зоной и нижним дренажом гарантирует более продолжительный срок использования масла. Улучшенные нагревательные элементы (ТЭНы) большей молцности позволяют готовить до $25 \mathrm{kг}$ продукции в 1 ч.

Электрофритюрница E1960 по конструкции и принципу работы аналогична электрофритюрнице Е1830, но отличается от нее бо́льшей электрической мощностью, габаритными размерами, массой, а также имеет не одну, а две корзины.

Таблица 17.9. Электрофритюрницы E1830 и E1960 фирмы Falcon (Великобритания)

Параметр	Модель	
	E1830	E1960
Мощностъ, кВт	10	20
Рабочий объсм масла, ィ	16	35
Габаритные размеры, мм:	300	
длина	770	770
глубина	870	870
высота	45	73
Масса, кт		

17.10. ПЕКАРНЫЕ ШКАФЫ И ПАРОКОНВЕКТОМАТЫ

Пекарные шкафы «Луко Ратионал» (табл. 17.10) производятся фирмой «Мэтос» и предназначены для выпекания кондитерских и хлебобулочных изделий, а также для нагрева и размораживания готовых и замороженных продуктов.

Пекарный шкаф (рис. 17.21) изготовляется из одной или двух самостоятельных рабочих камер, которые полностью выполнены из нержавеющей стали.

Принцип работы шкафа основан на принудительной циркуляции горячего воздуха, которая обеспечивает быструю и ровную выпечку кондитерских изделий. Камеры пекарного шкафа имеют вентилятор, который циркулирует нагретый ТЭНами воздух в рабочей камере.

Температура в рабочей камере регулируется термостатом и автоматически поддерживается на заданном уровне в пределах $50 \ldots$ $350^{\circ} \mathrm{C}$.

Продолжительность ныпечки кондитерских изделий $0 . . .60$ мин регулируется таймером. Таймер имеет зуммер, который сигналом оповещаст окончание заданной продолжительности выпечки. В рабочей камере установлено приспособление, которое постоян-

Таблица 17.10. Технические характеристики пекєрньıх шкафов «Луко Ратионал» фирмы «Метос»

Параметр	Марка шкафа	
	1-ПС	2-ЕПС
Количество рабочих камер, шт.	1	2
Количество загружаемых противней, щт.	15... 40	$30 . . .80$
Ориентировочная производительность в 1 ч, шт.	$1800 . .2000$	$3600 \ldots 4000$
Общая мощностъ, кВт	33,3	66,6
Напряжение, В	380	
Продолжительность разогрева, мин	25... 30	$25 . .30$
Регулируемая температура в камере, ${ }^{\circ} \mathrm{C}$	$50 . .350$	50... 350
Регулируемая продолжительность тепловой обработки, мин	$0 . . .60$	0... 60
Габаритные размеры шкафа, мм:		
длина	2000	3600
ширина	1220	1220
высота	2250	2250

но увлажняет воздух паром, что необходимо для образования равномерного колера.

Аля загрузки камеры изделиями имеется вкатная тележка, изготовленная из нержавеющей стали. Тележка имеет специальные направляющие для установки противней.

В рабочей камере находится устройство для вращения тележки во время выпечки, что вместе с циркуляцией горячего воздуха обеспечивает ровное выпекание кондитерских изделий.

Пароконвектоматы. Пароконвектомат - это универсальный прибор для приготовления пищи, который по праву можно называть сердцем профессиональной кухни. Он один способен заменить сразу несколько видов технологического оборудования плиту, жарочный и духовой шкафы, опрокидывающуюся сковоролу, пищеварочный котел, гриль, фритюрницу и некоторое другое оборудование. Продукты питания в пароконвектоматах обрабатываются в режимах: пар, горячий воздух, комбинированный режим, варка и жаренье при низкой температуре (HT). При этом

значительно возрастает производительность и улучшаются вкусовые качества притотовленных блюд.

Особенностью пароконвектоматов является снособность приготовления пищи в минимальном количестве воды и жиров с исключением передачи запахов при одновременном приготовлении нескольких блюд. Сохранение витаминов и минералов в приготовленных блюдах, большая экономия энергии, воды, небольшая занимаемая площадь для установки, быстрота приготовления блюд - вот основные достоинства пароконвектоматов.

Благодаря такой возможности, как регулирование влажности в рабочей камере, продукты приготовляются почти без потерь своей массы. С помощью единственного аппарата можно печь, жарить, готовить на пару, бланшировать и др. Кроме того, пароконвектоматы можно использовать для быстрого размораживания, стерилизации компотов и консервов, для сушки овощей и фруктов, в качестве расстоечного шкафа для теста и других технологических процессов.

Тепловая обработка пищи происходит в рабочей камере, где с помощью вентилятора равномерно циркулирует горячий воздух. В течении процесса приготовления блюд воздух можно увлажнять путем пароообразования. Влажность регулируется автоматически в зависимости от заданного параметра и режима. Режимы можно программировать и тогда процесс приготовления блюд происходит независимо от обслуживающего персонала.

Все процессы обработки продуктов управляются встроенным микрокомпьютером, в памяти которого содержится около 200

Рис. 17.21. Пекарный шкаф «Луко Ратионал»: α - марки 1-ПС: б - марки 2-ЕПС

программ, связанных с обработкой различных продуктов. Кроме того, работой пароконвектомата можно управлять в ручном режиме.

Аля наиболее качественного приготовления пищи можно выбрать один из трех основных режимов.

Горячий возgух (диапазон температур $30 \ldots 280^{\circ} \mathrm{C}$). В этом режиме пища готовится под воздействием горячего воздуха, который равномерно циркулирует внутри варочной камеры при температуре от 30 до $280^{\circ} \mathrm{C}$. Этот режим применяется для жаренья и приготовления на гриле цыплят, блюда "минутка", жаренья шницелей, выпекания пирогов, кулинарных изделий, французских булочек и батонов.

Комбинированный режим (диапазон температур $50 \ldots 280^{\circ} \mathrm{C}$). При работе в этом режиме происходит соединение горячего воздуха и пара. Режим идеален для приготовления мяса (минимизирует потери массы, сохраняет сочность продукка). Применятся дяя приготовления мяса и запекания макаронных изделий, картофеля по-французски, запеканок.

Паровой режим (диапазон температур $30 \ldots 130^{\circ} \mathrm{C}$). Этот режим используется дия размораживания пицевого сырья и продуктов, варки на пару, варки картофеля, рыбы, риса, овощей и яиц. Режим может использоваться и дя био-варки, так как подходит для бережного приготовления блюд при низких температурах, при которых продукты сохраняют массу, не теряют аромата, цвет, минеральныс вещества, витамины, сохраняют пищевую ценность.

Основные режимы работы пароконвектоматов базируются на законах конвекции (переносе теплоты воздухом) за счет пара, который образуется с помощью двух следующих систем.

Бойлерной системы как наиболее распрострашенной системы парообразования. В парогенераторе с помощью нагревательных элементов вода быстро нагревается и исшаряется, а образовавшийся пар через специальный клапан поступает в рабочую камеру пароконвектомата. Бойлерная система цроста в эксплуатации, однако недостатками ее являются большая энергоемкость и образоваиие накипи на ТЭНах. Бойлерные машины сгоят достаточно дорого, поэтому производители разработали инжекторные пароконвектоматы, которые не утратили оснонные функции пароконвектоматов с бойлерными системами, но в то же время стоят дешевле.

Инжекторной системы, в которой вода подается через маленькую трубку в рабочую камеру к центру врацаюцейся турбины. Высокоскоростная турбина диснерıирует (рассеивает) вих-

ревым потоком воду на мельчайшие частицы, которые испаряются на крутообразных ТЭНах и наполняют паром рабочую камеру.

В настоящее время на предириятиях общественного питания широко применяются универсальные пароконвектоматы моделей SE-UCRU 1012 Bourgeois (Франция), 1021 cb Retiqo (Чехия) (рис. 17.22), ПКА 6-1/1П и ПКА 6-1/1В (Россия).

Различные модели пароконвектоматов имеют множество функций, способствующих высокому качеству приготовления блюд. Они способны:

- автоматически регулировать продолжительность приготовления блюда в зависимости от количества продуктов;
- автоматически программировать часто заказываемые блюда;
- с помощью графического дисплея помогать обслуживающему персоналу мащины коптролировать стадии приготовления пищи;
- исполззвать интегрированную (встроенную) систему автоматической мойки, заменяя трудоемкий ручной труд;
- заменять нажатием многофункционалыной входной подтверждающей пусковой кнопки использоващие кıопок для отдельных функций меню работы пароконвектомата;
- обеспечивать автоматический предварительный нагрев рабочей камеры до начала процесса приготовления б́люд;
- использовать функцию «дельта Т» при жареньи. Эта функция служит мля обеспечения постоянной разности значе-

Рис. 17.22. Модели пароконвектоматов SE-UCRப 1012 Bourgeois (a) и 1021cb Retigo (6)

ний между температурой в середине готовящегося блюда из мяса и температурой внутри рабочей камеры. Процесс приготовления блюда заканчивается, когда температура внутри рабочей камеры достигнет значения температуры, установленной (здданной) для середины куска мяса;

- использовать жаренье с температурным зондом. Этот способ используется в целях уничтожения болезнетворных микробов;
- автоматически включаться при вводе в программу времени включения.

Технические характеристики некоторых пароконвектоматов приведены далее.

Технические характеристики пароконвектоматов

Параметр	Моgель		
	SM-UCRU 1012	1021cb	ПКА 6-1/1П
Вместимость, уровни 6	10	6
Производительность, порции 200	300	150
Мощность, кВт 18	29,8	905
Напряжение электропитания	, B 40	40	220/380
Macca, kr... 142	220	115

17.11. ТЕСТОМЕСИЛЬНЫЕ МАШИНЫ

Технологическое оборудование для производства кондитерских и кулинарных изделий выпускают более 800 фирм из 20 стран мира.

Рис. 17.23. Тестомесильная машина фирмы «Моно»

Тестомесильные машины периодического действия используются для приготовления порции теста. Эти машины производят с подкатными или стационарными дежами. Многие машины имеют опрокидывающийся механизм и две скорости вращения смесительных органов.

Тестомесильные машины имеют разные вместимости дежей и различаются конфигурациями месильных органов. Габаритные размеры машин зависят от вместимости месильной емкости, которая колеблется от 20 до 250 л.

Фирма «Моно» (Англия) производит сниральную тестомесильную машину (рис. 17.23) с разной вместимостью загрузки дежи (от 20 до 250 л).

Рабочие детали машин изготовлены из нержавеющей стали и взаимозаменяемые на всех машинах.

На отдельных машинах есть возможность программирования рабочих циклов. Блок управления машин имеет автоматический стартер и таймер, а также механизм для наклона дежи.

Техника безопасности при работе на данной машине аналогична работе на тестомесильных машинах отечественного производства.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое универсальный привод?
2. В какой последовательности собираются электромясорубки?
3. Что понимают под термином "котлы двойного применения»?
4. Как работает кофеварочный аппарат «Омниа-люкс»?
5. Опишите принцип работы пекарного шкафа «Луко Ратионал».
6. В чем достоинство тестомесильных машин фирмы «Моно»?

Список литературы

Ботов М.И. Тепловое и механическое оборудование предприятий торговли и общественного питания / М. И. Ботов, В. А. Елхина, О.М. Голованов. - М. : Издательский центр «Академия», 2009.

Каталог оборудования для общественного питания. - М. : Компания "Сухаревка", 2008-2009.

Могииьный М. П. Оборудование предприятий общественного питания: Тепловое оборудование / М.П. Могильный، Т.В. Калашнова, А.Ю. Баласашян. - М. : Издательский центр «Акалемия», 2004.

Оборудование предприятий торговли и общественного питания / под ред. В. А. Гуляева. - М. : ИНФРА-М, 2002.

Основные виды и характеристика оборудования для оснащения предприятий общественного питания. - М. : Торговый диэайн, 2002.

Правила охраны труда на предприятиях массового питания. - СПб.: Комитет РФ по торговле, 1993.

Сборник материалов общероссийского совещания по охране и безопасности труда. - Министерстно труда Российской Федерации, 1996.

Технические характеристики технологического оборудования: Проспект. - Саратов : Продмаш, 2003.

Типовые инструкции по охране труда для работников предприятий торговли и общественного питания. - СПб.: Комитет РФ по торговле, 1996.

Фатыхов $A . Ф$. Охрана труда в торговле, общественном питании, пищевых производствах в малом бизнесе и быту / А. Ф. Фатыхов, А. Н. Белехов. - М. : Издательский центр "Академия», 2007.

Черевко А. И. Оборудование предприятий общественного питания / А. И. Черевко, Л. Н. Попов. - М. : Феникс, 2003.

Щеглов Н.Г. Технологическое оборудование предириятий общественного питания и торговли / Н. Г. Щеглов, К. Я. Гайворонский. - М. : Деловая литература, 2001.

Оглавление

Предисловие 4
Глава 1. Общие сведения об оборудовании 8
1.1. Классификация оборудования, используемого на предприятиях общественного питания 8
1.2. Требования к материалам, используемым для изгочовления машин 9
1.3. Основные части и детали машин 10
1.4. Понятие о передачах 10
1.5. Понятие об электроприводах 14
1.6. Аппараты вклочения 15
1.7. Апıараты защиты 17
1.8. Аппараты контроля и управления 20
1.9. Техническая документация машин 22
Глава 2. Универсальные приводы 23
2.1. Классификация универсальнљх приводов 23
2.2. Правила эксплуатации и техники безоласности универсальных Іриводов 27
2.3. Смениғе механизмы универсальных, специализированных и МалоІабаритиных приводов 32
Глава 3. Оборудование для обработки овощей 49
3.1. Сиособы очистки овопцей 49
3.2. Картофелеочистительные машины 50
3.3. Овощерезательные машины 56
3.4. Протирорезателыные машины 59
3.5. Поточные линии по переработке овощей 63
Глава 4. Оборудование для обработки мяса и рыбы 65
4.1. Классификация оборудования дия обработки мяса и рыбы 65
4.2. Мясорубки 66
4.3. Фаршемешалки 71
4.4. Машины для рыхления мяса 73
4.5. Котлетоформовочная машина 75
4.6. Рыбоочистительные машины 77
Глава 5. Оборудование для подготовки кондитерского сырья 79
5.1. Принцип работы измельчительных механизмов 79
5.2. Измельчительные механизмы 80
Глава 6. Оборудование для приготовления и обработки теста и полуфабрикатов 87
6.1. Классификация машин для приготовления теста и полуфабрикатов 87
6.2. Просеивательные машины 88
6.3. Тестомесильные и тестораскаточные машины 94
6.4. Взбивальные машины 100
Глава 7. Оборудование для нарезания хлеба и гастрономических продуктов 108
7.1. Машины для нарезания хлеба 108
7.2. Машины для нарезания гастрономических продуктов 112
Глава 8. Общие сведения о тепловом оборудовании 115
8.1. Классификация теплового оборудования 115
8.2. Тепловая обработка продуктов 116
8.3. Понятие о теплообмене 118
8.4. Источники теплоты 118
8.5. Понятие о процессе горения 121
8.6. Мероприятия по экономии топлива 122
8.7. Техника безопасности при эксплуатации теплового оборудования 123
Глава 9. Пищеварочные котлы и автоклавы 125
9.1. Классификация и устройство пищеварочных котлов 125
9.2. Электрические пищеварочные котлы 128
9.3. Газовые пищеварочные котлы 145
9.4. Паровые пищеварочные котлы 151
Глава 10. Пароварочные аппараты 157
10.1. Классификация пароварочных аппаратов 157
10.2. Аппараты пароварочные электрические 158
10.3. Элекгрические кофеварки и сосисковарки 162
Глава 11. Аппараты для жаренья и выпечки 167
11.1. Сковороды 167
11.2. Фритюрницы 178
11.3. Жарочные и пекарные шкафы 184
11.4. Высокочастотные шкафы 190
Глава 12. Варочно-жарочное оборудование 193
1'2.1. Классификация варочно-жарочного оборудования 193
12.2. Пииты электрические 194
12.3. Плиты газовые 206
Глава 13. Водогрейное оборудование 210
13.1. Классификация водогрейного оборудования 210
13.2. Кипятильники 211
13.3. Водонагреватели 217
Глава 14. Оборудование для раздачи пищи 223
14.1. Классификация оборудования для раздачи пищи 223
14.2. Мармиты 224
14.3. Линии самообслуживания 231
Глава 15. Холодильное оборудование 234
15.1. Общие сведения о холодильном оборудовании 234
1!.2. Способы охлаждения 235
13.3. Холодильные машины 236
l's.4. Вили торгоного холодильного оборудования 239
16.5. Холодилвные ирилапви и витрины 245
15.6. Аincorerieparopia 249
Глава 16. Охрана труда и техника безопасности 252
16.1. Законодательство по охране труда и технике безопасности 252
16.2. Организация работы по охране труда 254
16.3. Производственный травматизм 259
16.4. Первая помощь при несчастных случаях на производстве 260
16.5. Основные мероприятия по технике безопасности и электробезопасности на производстве 264
16.б. Обцие правила эксплуатации электрооборудования и основные требования техники безопасности 266
16.7. Пожарная безопасность 269
16.8. Типовая инструкция по охране труда повара 270
Глава 17. Оборудование зарубежных производителей 274
17.1. Универсальные приводы 274
17.2. Электромясорубки и куттеры 282
17.3. Картофелеочистительные машины 286
17.4. Электрические котлы 287
17.5. Электросковороды 290
17.6. Хлеборезательные машины 291
17.7. Электрические плиты 293
17.8. Кофеварочныс аппараты 295
17.9. Электрофритюрницы 302
17.10. Пекарные шкафы и пароконвектоматы 303
17.11. Тестомесильные манины 308
Список литературы 310

Учебное изgание

Золин Виктор Петровнч

Технологическое оборудование предприятий общественного питания

Учебник

12-е издание, стереотипное

Редактор B. А. Савосик
Технический редактор Н. И. Горбачёва
Компьютерная верстка: Н. В. Протасова
Корректоры А.А. Котова, Н. В. Савельева

W'и. № 112101017 . Подписано в печать 03.04.2014. Формат $60 \times 90 / 16$.
Гıриитура "Балтика". Печать офсетнәя. Бумага офс. № 1. Усл. печ. л. 20,0.
І'иревж 2500 экз. Заказ № 747
()()) «Издательский центр «Академия». www.academia-moscow.ru 121085, Москва, пр-т Мира, 101B, стр. 1.
'l'м./中akc: (495) 648-0507, 616-00-29.
('ıитарио-эиидемиологическос заключение № POCC RU. AE51. H 16474 от 05.04.2013.
(rнематано с электронных носителей издательства.
()^О) «Тнерской полиграфический комбинат», 170024, г. Тверь, пр-т ленина, 5.

Тיлифон: (4822) 44-52-03, 44-50-34. Телефон/факс: (4822) 44-42-15.
I lsmo page - www.tverpk.ru Электронная почта (E-mail) - sales@tverpk.su

Для подготовки квапифицированных кадров по профессии «Повар, кондитер» рекомендуютс mennolime yuethuminyebitie nocoting

- 3. П. Матюхина

Основы физиолог! питания

- Т.А Качурина Основы физиоло unnuenth Patonas тerpags
- Н. З. Харченко Сборник рецептуf бпюд и кулинарны: издепий
- T.A Сопачева, H.B. Воподина Оборудование предприятий общественного питания. Рабочая тетрадь

ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ПРЕДПРИЯТИИ О5ШЕЕСТВЕННОГО ПИTAHMЯ

Издательский центр «Академия» www. academia-moscow. ru

[^0]: Рис. 6.1. Машина для просеивания муки МПМ-800:
 а - схема машины; б - общий вид; 1 - огнование: 2 - подьемный механизм; З-крышка просеивающей головки; 4 - просеивающая головка; 5 - загрузочный бункер: 6 - электродвигатель привода; 7 - крыльчатка; 8 - шнек; 9 - рукав; 10 - магнитная повушка; 11 - откидной бопт; 12 - сито

